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Abstract-Exact solutions of the uniform-property laminar-boundary-layer equations, presented in 
earlier papers of the series, are used in developing approximate methods for predicting mass-transfer 
rates from two-dimensional and axi-symmetrical surfaces with arbitrary main-stream velocity when 
the interface and transferred-substance conditions are uniform along the surface. The mass-transfer 
rate is obtained sufficiently accurately for many purposes from the evaluation of a single quadrature 
involving the main-stream velocity and constants which depend on the Prandtl/Schmidt number; 
an iterative procedure is presented which increases the accuracy somewhat. The method is a develop- 

ment of that of Eckert and Livingood, and makes use of the quadrature procedure of Walz. 

NOMENCLATURE 

dimensionless flux property, equation 

(2): 
gradient of b adjacent to the interface, 
equation (Al) and Paper 3 ; 
dimensionless driving force, equation 

(1); 
constant-pressure specific heat of mass 
stream, Btu/lb degF, footnote Section 
2.3 ; 
constant-pressure specific heat of 
coolant, Btu/lb degF, footnote Section 
2.3; 
correction factor for F4, equation (39); 
equal to (UC/v) (dd,“/dx), equation (39); 
dimensionless stream function at inter- 
face, Appendix (A); 
dimensionless velocity gradient at inter- 
face, Appendix (A); 
total mass-flux vector, lb/ft2 h, equation 

(2); 
surface conductance for mass transfer, 
Ib/ft2 h, equation (1); 
integral of equation (51), Paper 3 ; 
coefficients in equation (51), Paper 3 ; 
cylinder diameter or sphere diameter, 
ft, Figs. 14, 17; 

t Professor of Heat Transfer. 
: Research Student. 

reference length, ft, equation (21); 
mass fraction of a substance, equation 

(5); 
mass fraction of oxygen in main 
stream, equation (54) ; 
mass-transfer rate per unit area, 
lb/ft2 h, equation (1); 
mass of carbon per unit mass of steel, 
equation (54) ; 
conserved property, equation (4); 
see equation (40) and Fig. 7; 
distance of point on surface from axis 
of symmetry, ft, equation (26); 
reference radius, ft, equation (26); 
constant in Newton’s second law of 
motion, lb ftjlbf ha, equation (52); 
temperature, degF, footnote Section 
2.3; 
mass of oxygen which combines with 
unit mass of iron, equation (54); 
flow velocity in x-direction, ft/h; 
u in main stream, ft/h, equation (6); 
flow velocity approaching cylinder or 
sphere, ft/h, equation (20); 
flow velocity in y-direction, ft/h: 
v at surface, ft/h, equation (7); 
distance measured along wall in same 
direction as mainstream, ft, equation 

(6) ; 
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perpendicular distance from wall, ft, 
equation (3) ; 
distance perpendicular to x and y, ft, 
Table 1. 

Greek symbols 
a constant related to pressure gradient, 
equation (6); 
momentum thickness, ft, equation (7); 
convective thickness, equation (18); 
conductive thickness, equation (6); 
exchange coefficient, lbjft h, equation 
(2); 
dynamic viscosity, lb/ft h, equation 
(15); 
kinematic viscosity, ft2/h, equation (6); 
density, lb/fp, equation (8); 
Prandtl or Schmidt number, equation 
(6); 
shear stress at wall, lbf/ft2, equation 
(52). 

Subscripts and Superscripts 
G 
s, 
T, 

0, 

* , 

** 
9 

f. 

II, 
III, 

main-stream state, equation (4); 
state adjacent interface, equation (4); 
state of transferred substance, equation 
(4) ; 
axi-symmetrical stagnation point, equa- 
tion (32); 
non-dimensional quantities defined by 
equations (20-22) ; 
non-dimensional quantities defined by 
equations (25-27); 
1st approximation, equation (42); 
2nd approximation, equation (43); 
3rd approximation, equation (51). 

INTRODUCTION 

1.1. Purpose of‘ the paper 
THE PRESENT paper is the fourth of a series, 
intended to provide methods for predicting 
rates of mass transfer through laminar forced 
convection uniform-property boundary layers. 
Papers 1 and 2, [l, 2’1 were devoted to methods 
of calculating the properties of the velocity 
boundary layer when the mass-transfer rate is 
specified. Paper 3, [3] considered the “similar” 
solutions of the differential equation for the 
distribution of a conserved property; it therefore 

dealt with problems of the standard mass- 
transfer type, but was restricted to simple 
geometrical circumstances. 

In the present paper we turn to the general 
problem: the prediction of mass-transfer rates 
without restriction as to free-stream velocity 
distribution. The method to be presented here is 
not the most general or most accurate; but it 
probably possesses the most useful combination 
of accuracy, ease of use and range of validity of 
all those currently available. A more accurate 
and generally valid method will be presented in 
Paper 5 of the series; this will be found however 
to involve appreciably greater computational 
difficulty than the present one. 

1.2. The pr5bie~~ to be solced 
Expressed in phy~ie~l term. We consider a 

surface of prescribed shape, immersed in a 
fluid stream (Fig. 1). We suppose that the 

Stagndtion 
point 

FIG. 1. Illustrating the problem of calculating mass- 
transfer rates. 

velocity of the stream outside a relatively thin 
boundary layer, tie, is given for all points on the 
surface. In addition, we postulate knowledge of 
the values of at least one conserved fluid 
property (e.g. enthalpy, or mass fraction of an 
inert chemical compound) for three fluid states: 
that of the main stream (G), that of the fluid 
adjacent the surface (S), and that of the sub- 
stance transferred into the stream (T). The 
problem is to determine the rate (e.g. in lb/ft” h) 
at which material is transferred across the pre- 
scribed surface into (or, of course, out of) the 
main stream. This quantity will be denoted by 
tii”. 

In order tq give geometrical significance to 
some of the important quantities, it is customary 
to define, and to focus attention on, certain 
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‘~bounda~-payer thicknesses”, to which the 
mass-transfer flux is directly related. The prob- 
lem then becomes that of predicting the appro- 
priate thickness of the boundary layer at ali 
points of the surface. 

Our problem arises in conaexion with many 
natural and techRo~o~~a1 processes, in&~ud~~g : 
drying of wet material in an air stream; eombus- 
tion of a Iiquid fuel; dissolution of a salt in a 
liquid stream t “ablation” of the nose-cone of a 
space-vehicle r-e-entering the earth’s atmosphere; 
condensation of steam on a cold surface; and 
many others. 

Expressed in mathemat~~l terms, the formu- 
lation which will be adopted is that of reference 
141, where it was shown that the mass-transfer 
rate can be expressed as a product of a con- 
ductance g, and a dimensionless driving force B; 
thus: 

fj2” = g . B. w 

Further, the conductance is obtained from the 
solution of a partial differential equation by 
evaluating the gradient of a potential b at the 
surface. The equation is: 

G 1 (Vb) - V[y(Vb)f = 0 m 

where G is the total mass-flux vector (lb/fta h), 
b is the dimensionless fluid property (potential), 
equal to zero at the interface engaging in mass 
transfer, and equal to B in the main stream. 
y is an exchange coefficient (Ib/ft h), equal to a 
diffusion coefftcient times the fluid density, or to 
the thermal conductivity divided by the specific 
heat, according to the nature of the conserved 
property for which b stands. 

The relation between the conductance and the 
gradient at the interface is: 

where y is distance normal to the interface, 
suffix S stands for fluid conditions adjacent the 
interface. 

The driving force B is obtained by evaluation 
of a suitable thermodynamic property, P, for the 
fluid in the main stream (G-state), at the inter- 

face (S-state) and in the transferred substance 
(T-state). The appropriate genera1 relation is : 

PG--E-4 ___-“” .- B = ps __ p** (4) 

For example, if water is vaporizing into (or 
condensing from) an air stream, an appropriate 
form of the driving force would be: 

where rnl~,o is the mass of steam per unit mass of 
focal mixture (II@) and =~~o, r = I, since the 
transferred substance consists entirely of I&O. 
Other examples of the driving force B will be 
found in [4]. In the present paper, however, 
B can be regarded as a quantity whose value is 
known: our task is to find means of evaluating g. 

The mathematical expression of the problem 
dealt with in the present paper is thus: find the 
solution to (2) for the geometry and ffow con- 
ditions illustrated in Fig. 1, taking the G- 
distribution from the relevant solution of the 
equation of motion; then deduce g via (3), and 
&” via (1). 

~~~~~~~~~o~ 0~ the scope qf the ~~~~~~~ are as in 
earlier papers of the series. The ff ow is supposed 
to be steady and laminar, and of sufficiently 
high Reynolds number for a boundary layer to 
form; the transport properties and the density of 
the fluid are supposed uniform; the geometry of 
the surface is such that the Row is either two- 
dimensionaf or axi-symmetrical; and the main 
stream can be regarded as large in extent so that 
all its thermodynamic properties, PG, are uniform 
outside the boundary layer. 

In addition, the method of the present paper is 
restricted to situations in which the relevant 
properties of the fluid at the surface and in the 
transferred substance, Ps and PT, are uniform 
over the surface. 

Except for those situations which give rise to 
the “sirniiar” boundary layers dealt with in 
Paper 3, equation (2) is rarely solved exactly; 
for it is a partial differential equation, requiring 
numerical solution. Although the equation 
degenerates, in a boundary-layer situation, from 
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an elliptic to a parabolic form, and so becomes 
amenable to forward integration, the computa- 
tional labour is still prohibitive as a rule. 

Approximate methods of solution are there- 
fore used. These have mostly been developed to 
deal with heat transfer in the absence of mass 
transfer; this means that they provide approxi- 
mate solutions to (2) for the particular case in 
which B tends to zero. However the methods 
can be made to apply to non-zero values of 
B also, as will be seen. 

The methods are of two classes, designated I 
and II in [S], but have one common feature: the 
assumption, either implicit or explicit, that all 
the profiles of velocity and of thermodynamic 
properties (P or b) appearing in the boundary 
layer belong to a restricted family. This assump- 
tion results in the reduction of parabolic 
differential equations to ordinary ones. 

The two classes of methods are distinguished 
by the number of differential equations which 
have to be so1ved.t Methods of Class 1 involve 
consideration of only one differential equation : 
this may be either the (degenerate form of) 
equation (2), as in the methods of Eckert [6] and 
Smith and Spalding [5]; or it may be the 
(degenerate form of the) velocity equation as in 
the methods of Seban [7] and of Drake [8]. In 
the latter case it is necessary to assume explicit/q 
that the boundary layers of velocity and of b at 
any location bear the same relation to each other 
as they do in the corresponding “similar” flows 
of Paper 3; in the former case, this assumption 
is made implicitly. 

Methods of Class li involve the solution of 
di~erential equations for both the velocity and 
the h-boundary layers. They therefore involve 
more computational labour than do the Class 1 
methods. When mass transfer is absent (B -+ 0), 
the b-equation can be solved after solution of the 
velocity equation; this has been the case in all 
methods of this class which have been developed 
hitherto [9, 10, 11, 121. When mass transfer is 
__ _. _~_~~ ~ -._ .- 

t If this system of classification is accepted, we ought 
to introduce a Class Zero for methods in which no 
differential equations are solved; such methods, which 
were omitted from the listing of Smith and Spalding [5] 
are exemptified by the method of Stine and Wanfass [13], 
which is discussed Iater (footnote to Section 3.1). 
Numerous heat-transfer methods have been classified in 
this way in [14J. 

present, on the other hand, the two equations 
must be solved simultaneously. 

The present paper provides Class I methods for 
the prediction of mass-transfer rates. The greater 
part of the attention will be devoted to a method 
of the Eckert type (solution of the b-equation); 
however a method of the Seban-Drake type 
(solution of the u-equation) will also be dis- 
cussed. 

Eckert and Livingood [Is] have already 
extended the method of 163 to problems of mass 
transfer, in the particular context of transpira- 
tion cooling. The present paper builds on their 
foundation and makes the following extensions: 
(i) greater range of parameters, including 
negative B, large positive B and a wide range of 
o-values, (ii) greater accuracy of auxiliary 
functions, obtained by use of exact solutions of 
the boundary-layer equations not available to 
the earlier authors, (iii) more direct derivation 
of the equations by the use of vectorial dimen- 
sional analysis, (iv) application of Walz’s [16] 
quadrature procedure for solving the differential 
equation, and presentation of the necessary 
constants, (v) improvements to Walz’s procedure, 
enabling second and higher approximations to 
be obtained. 

I .4. Outline of the present paper 
Section 2 presents the extension of the Seban- 

Drake method to the calculation of mass 
transfer. It is presented first since it is rather 
directly related to the procedures introduced in 
Paper 1 of the series, and forms a convenient 
introduction to the somewhat more subtle 
method of Section 3, namely the extended 
Eckert method. Because the Seban-Drake 
section is not the recommended one,‘Section 2 
appears in small print, 

The development of the argument is similar 
to that followed in Paper 1; it has the following 
steps : simplifying assumption, dimensional 
analysis, reference to the “similar” solutions for 
the form of functions appearing in an ordinary 
differential equation, provision of a quadrature 
procedure, and extension to axi-symmetrical 
flows. The most useful formula resulting from 
this discussion is equation (44); combined with 
the auxiliary Tables 4a and 4b, this equation is 
all that is needed by readers solely concerned 



MASS TRANSFER THROUGH LAMINAR BOUNDARY LAYERS-l 367 

with the use of the method. For many purposes 
the first approximation, equation (45), is suf- 
ficiently accurate. 

Section 4 provides some examples of the use of 
the method of Section 3. 

2. EXTENSION OF THE SEBAN-DRAKE METHOD 
TO MASS TRANSFER 

2.1. The argument 
The “similar” solutions of the b-equation [equation 

(2)], which were discussed in Paper 3, could be represented 
in the form: 

Here A, = “conduction thickness” (ft) 
= rig = Bl(ablay)s, 

; 
= kinematic viscosity of fluid (ft2/h), 
= dimensionless quantity relating to pressure 

gradient, 
0 = CLIY = Prandtl or Schmidt number 

(dimensionless), 
p = dynamic viscosity of fluid (Ib/ft h), 
f(. . .) = “some function of. . .“. 

The “similar” solutions of the velocity equation, which 
were discussed in Papers 1 and 2 of the series, could be 
put in the form: 

Sz2 due 
- =I(&+). 

Y dx 
(7) 

Here 6, = “momentum thickness” (ft) 

= j-r (u/uc)Il - (uIuG)I dy, 
US = normal velocity at the surface (ft/h) 

= ?iifj p, 
P = fluid density (Ib/ft3), 

f(. . .> = “some function of. . .“, of course not 
the same function as that of equation (6). 

Now the definitions of A,, g and us imply the 
relations : 

(8) 

Consequently, /3 can be eliminated between (6) and 
(7), and the resulting relation can be cast in the 
form : 

(9) 

where f(. . .) of course now stands for yet another 
function. 

The essential assumpfion. Equation (9) is exact only for 
a restricted family of flows: we shall take the “similar- 
solution” family, when establishing the form of the 

function. However, all the quantities appearing in the 
equation are local i.e. measurable at a particular location 
on the surface; no knowledge is required of distance from 
the leading edge, for example. It is therefore clear that an 
approximate method for predicting A, can be developed 
if we make the assumption: equation (9) shall be regarded 
as valid for “non-similar” as well as for “similar” 
boundary layers. 

The method. Paper 1 has already explained how 6, can 
be calculated, in a given flow, by solution of the differ- 
ential equation: 

UG dsz2 m% %=duo 
v dx Y dx’ Y ’ (10) 

Since US is not a given quantity in problems of the type 
considered here, while B is, we introduce (8) and (9) 
into (10); this then takes the more useful form: 

Provided the function F,, the constants Y, B, and the 
velocity distribution UC(x) are known, equation (11) can 
be solved numerically: the result is a distribution of 6, 
over the surface. Paper 1 presented some techniques for 
doing this, and some examples. 

Once 6,(x) is given, A4(x) can be obtained via equation 
(9), provided of course that the function appearing there is 
tabulated. 

2.2. Auxiliary functions 
Papers 1 and 2 contain graphs and tables of @o/v) 

(d6,2/dx) as a function of (sz2/~) (duu/dx) and V&/V. To 
use these in the above method it is simply necessary to 
have a means of evaluating U&/Y for each value of B, D 
and (Zjz2/v) (duc/dx). The method will be illustrated by 
means of the following example. 

2.3. Use of the method 
As an illustration, we consider a transpiration-cooling 

problem. We suppose that a surface has to be cooled by 
forcing a gas through the surface, which is made porous 
for this purpose. Specification of the stream, coolant and 
desired surface temperatures fixes the driving force B; 
let us suppose that this has the value 1.0 in the present 
case.t Suppose further that the free-stream velocity 
distribution is given, e.g. via Fig. 2 which happens to be 
valid, according to Schmidt and Wenner [17], for a 
cylinder. 

Here U is the approach velocity and I is the cylinder 
diameter. Assuming the Prandtl number D to be 0.7, and 
taking B = 1.0, we can find a value of V&/Y for each 

t The relation is: B = C(tG - ~s)/c~~~I (ts - tT) in 
the absence of radiation, where to, tT and Is are 
respectively the temperatures referred to in the text, 
while c and ceooi are respectively the constant- 
pressure specific heats of the main stream and of the 
coolant. For explanation, see [4]. 
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value of (S,2j~) (duc/dx) from the “similar” solutions of 
Papers 1, 2, and 3. This set of values defines a line on 
Fig. 3, which is taken from Paper 1 of the series and 
represents the auxiliary function F,; the curve corres- 
ponding to u = 0.7 and B = 1.0 is the one marked 
“exact” on Fig. 3. 

The existence of this curve permits us to write equation 
(IO) as: 

(12) 

which can now be solved numerically since a82 is the only 
unknown. However an approximate solution is obtain- 
able more easily if the curve is replaced by a straight line 
as also shown in Fig. 3; in the present case, this approxi- 
mation may be represented by re-writing (12) as: 

UG da,2 --= 
v dx 

0.6725 - 5.87 !; !!! (13) 

which has the closed-form solution: 

Once 6, has been evaluated at points of interest by 
inserting the given UC(x) function in the quadrature of 
(14), the quantities A,, g or ti” are easily obtained from 
the similar solutions. Thus, if the mass-transfer rate ti” 
is required, we simply recah that, from the definitions: 

w 

FIG. 2. Velocity distribution, UC(X), for the front half 
of a cylinder [17]. 

0.6 

-%$+ 
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0 

PK. 3. F2 vs. (8gZ/V)(dUo/dx) with vsS,/~ as parameter. 
Broken lines are for B = I.0 and (r = 0.7. 

Now the value of V&/V can be obtained, for each 
value of (822/~) due/dx, directly from Fig. 3: it lies close 
to 0.18 in the present example. The riot-hand side of ( 15) 
can therefore be deduced from the 8, (x) values yielded 
by (14). Fig. 4 shows the results, for the present example, 
in the form of curves of &/1) (Ul/~)l/~ and of (ti” r/p) 
(Ul/~)~l’” versus x/l. Two pairs of curves are exhibited, one 
based on the exact F,-functions, the other based on the 
linear approximation of equation (13); the difference 
between the two solutions is seen to be negligible for 
most purposes. 

2.4. Discussion 
The method just described has the advantage 

that it is merely a modification and extension of 
that presented in Paper 1 for the approximate 
prediction of the properties of the velocity 
layer; it therefore provides no new conceptual 
dificulties. 

On the other hand, the use of the method 
requires the availability of two sets of auxiliary 
functions: those of Paper 1 and those contained 
in Paper 3. 

Another aspect of the same disadvantage is 
that, in carrying out the calculation, we are 
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I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

X/l 

FIG. 4. Solution for transpiration cooling of a 
cylinder with B = 1, D = O-7 by method of Section 2. 
Dotted line using linear approx~ation for Fz. Solid 

line using exact values of Ft. 

forced to evaluate properties of the veloci?y 
boundary layer in which we are not directly 
interested. j 

In these circumstances it is reasonable to ask: 
“Why not eliminate reference to 8, by postulating 
the existence of a differential equation like (11) 
but with 0: as the independent variable?” The 
recognition of this question, and the elaboration 
of its implications, are to be credited to Eckert 
[6], who was there solely concerned with heat 
transfer (B = 0). The same author subsequently 
explored the case B -# 0 [15]; we here follow in 
his footsteps, taking also the opportunity to 
display the logic of the method more completely 
than has been customary. 

3. EXTENSION OF THE ECKKRT METHOD TO 

MASS TRANSFER 

3.1. The argument 
SimpIifving assumption. Focusing attention 

on the “conduction thickness” A,, we now ask 

t Of course, if we are interested in calculating how 
much effect the mass transfer has on the drag coefficient, 
etc. this remark does not apply. 

ourselves what the rate of growth of A, can 
depend on. If we postulate the same “shortness 
of memory” which was supposed, in Paper 1, to 
characterize the velocity boundary layer, we can 
allow only local properties to appear in the 
answer to this question. We thus suppose that 
dA,/dx depends only on: UG, duo/dx, ti”, A,, a,, 
V, p, y, B. The distance x from the start of the 
boundary layer is specifically excluded from this 
list since we argue that this is not a local pro- 
perty and that the boundary layer should have 
no “recollection” of it.: 

Dimensional analysis. We now apply a dimen- 
sional analysis, in which account is taken of the 
laminar boundary-layer simplification which 
ensures that viscous and diffusive effects are 
responsive only to gradients in the y-direction 
(normal to the wall). In this case the x-, and y-, 
and z-directions may be regarded as possessing 
different dimensions (viz. X, Y, 2). The dimen- 
sions of all the quantities appearing in the 
previous paragraph are therefore as shown in 
Table 1, where T stands for the dimension of time 
and M stands for the dimension of mass. It will 
be noted that nine physical quantities appear in 
the table, and that there are four independently 
appearing dimensions (X, Y, T and M/Z); we 
deduce that the physical quantities are related 
by an equation involving five (i.e. nine minus 
four) dimensionIess quantities. These might 
conveniently be : 

UG dA: A; duo A, rii’d, pv 

v dx’ - - -7 ---‘, -. Y dx ’ 8, y y 

$ It is in this respect that the method, like that of 
Paper 1 of the series, differs from the Class-Zero method 
of Stine and Wanlass [13], for example. The latter 
authors eliminate dA,/dx from the functional relation- 
ship and substitute x. This implies that the boundary 
layer has a highly selective memory: it can recollect how 
far it is from the stagnation point, but forgets everything 
that has happened between that point and the local 
station. Although it must be admitted that no definitive 
comparison of the relative accuracy of the Class-Zero 
and Class I methods has ever been made, the unreason- 
ableness of the assumption has influenced the authors to 
pay relatively little attention to Class-Zero methods in the 
present work. Although these methods simplify computa- 
tion (the disappearance of dAJdx means that there is no 
longer a differential equation to be solved) the authors 
believe that this is at the expense of physical plausibility. 
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Tub/e 1 

The last two dimensionless groups appearing 
in this list are respectively equal to B and to u, 
by reason of previously introduced definitions. 

~i~e~en~i~~ eq~u~ions for ~o~~~~ry-~~ye~ 

growth. tt follows that the simplifying assump- 
tion noted at the beginning of this section can be 
expressed symbolically as : 

where F4 is an as-yet-unknown function. 
As in the method of Paper 1, we can determine 

the form of the function F4 (. . . .) by reference 
to the “similar” solutions. If this is done 
straightforwardly, however, it is found that the 
function has only three independent arguments; 
for the four quantities appearing in F4 ( . . . .) are 
already linked via (9). This fact permits us to 
drop the quantity A,/S, and to reduce equation 
(16) to: 

Equation (17) is the differential equation for 
growth of the conduction thickness A,. It does 
not contain the momentum thickness S, ex- 
plicitly. It may be solved by numerical means 
whenever ho (x) is specified and B and a are 
known. 

Discussion. The argument which has just been 
developed in terms of A, could equally well have 
been applied to the convection thickness A,, 
defined by: 

3,~s: gc(l -;)dy. (18) 

If this had been done, the equation cor- 
responding to (17) would have been the “integral 
b-conservation” equation, namely : 

1 t&G dA; (1 + B) A, A; due ._ - -- 
2 Y dx 

-----a 
=-A, v dx (19) 0 

The procedure for solving (19) is the same 
as that for (17); in this case it is necessary to 
express [(I + @/a] (A,jA,) as a function of 
(L&V) (duc/dx) by reference to the “similar” 
solutions. Equation (19) is therefore no easier 
to solve than (17); and its solution still involves 
the assumption that local conditions are 
identical with those in “similar” boundary 
layers. Nevertheless, solutions to (19) may be 
regarded as more satisfactory (i.e. likely to 
correspond with reality) than those to ( 17): for 
at least equation (19) is derived directly from the 
rigorous partial differential equations, whereas 
equation (17) is not. 

Despite this consideration, the use of A, is 
preferable as a rule because the mass-transfer 
rate may be determined from it directly. The use 
of A4 rather than A, is a particularly bold 
extension of the line of thought underlying the 
so-called “integral methods”, first developed in 
connection with the velocity boundary layer; 
there however only 6, is considered as a variable. 
The extension was first made by Eckert [6]. 

Another reason for preferring A, to A, has 
been uncovered in [5]; considering only the case 
of B = 0, the authors of this reference showed 
that the AZ-equation is less amenable to approxi- 
mate solution as a quadrature than is the A, 
equation. This is of course not a consideration 
to which weight need be given by those tvho are 
well equipped for the numerical solution of non- 
linear differential equations. 

3.2. The prediction procedure 

We are now in a position to describe a pro- 
cedure for predicting the mass-transfer rate 
at any point on a surface for which B. u and 
ldc (x) are specified, in the form of the foliowing 
list of instructions: 

Step (i) Choose reference values of velocity, C: 
and length L; these may convenientiy be the 
velocity far upstream of the body and the 
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overall length along the surface of the body, but 
other choices are permissible and may some- 
times be desirable. 

Step (ii) Define non-dimensional quantities u& 
x*, and 01 as follows: 

u; = UGfU (20) 

x* = x/L (21) 

A; G A, d(U/Lv). (22) 

The differential equation to be solved now be- 
comes 

dA12 
u; -d%- = F4 

du; 
de2 --, B, o 

4 dx* 
. (23) 

Step (iii) Differentiate the U: (x*) curve appro- 
priate to the particular problem, so that now 
duJJdx* and u,: are both available as functions 
of x”. 

t&J”) ( duG/dxl ( d:/v) (duG/dx) 

FIG. 5a. F4 vs. (d,z/r)(duc/dx) for D = 0.7 with 
B (2 0) as parameter. 

FIG. 5b. F4 VS. (da’/v)(duG/dx) for 0 = 0.7 with 
B (~0) as parameter. 

Step (iv) Solve equation (23) by standard pro- 
cedures of numerical analysis (e.g. Runge- 
Kutta) referring to Step (iii) for the functions 
particular to the problem, and to a general 
table or graph of F4 for the particular values of 
B and u in question. Note that 42 (dui/dx*) is 
identical in value with (A;;‘/v) (duG/dx). 

The result of this step is a curve of 0: versus 
x*. 

Step (v) Evaluate ti” at each value of x* from 
the relation : 

. I, YB 
m =-- 

A; (24) 

The auxiliary function F,. To permit the per- 
formance of Step (iv) of the procedure, a table 
or graph of F4 is needed. This can be constructed 
from the similar solutions of the b-equation as 
explained in Paper 3. 

Since the function FJ has three arguments, the 
establishment of sufficient tables is a formidable 

-50 
-0.1 

2 3 4 5 6 
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FIG. 6a. cWF, vs. u2,a(~~21~)(d~o/d~) for ts + w 
and various B ( > 0). 

task. In the present paper only two tables are 
presented; both based on the work reported 
in Paper 3. Table 2 contains values of F4 valid 
for various values of (At/v) (duo/dx) and B and 
for a u-value of 0.7; the values have been taken 
almost directly from Paper 3. Table 3 contains 
values of the quantity u2’3F4 for various 
values of G/3 @i/v) (duc/dx) and B, which are 
asymptotically correct for high values of u; the 
Table has been constructed by the methods out- 
lined in Appendix A. 

The contents of Tables 2 and 3 are presented 
graphicahy in Figs. 4a, b and a, Sb, it should be 
noted that, because of the nature of the under- 
lying solutions, Table 2 and Fig. 5 are subject 
to future amendment as more exact solution of 
the “similar” b-equation become available; 
Table 3 and Fig. 6, on the other hand, probably 
already possess three-figure accuracy 

The range of validity of Table 3 and Fig. 6 
can be estimated by evaluating F4 for u = 0.7 
and comparing the values with those in Table 2. 
Some results of doing so are shown in Table 6. 

05 I.5 2.0 2.5 3.0 

P@~A:/P) tduo,‘dr) 

It is seen that although the values from the two 
tables agree tolerably for /3 = 0 and B = 0 
considerable errors may arise elsewhere. Clearly 
the use of Table 3 should be restricted to values 
of u greater than 0.7. 

3.3. Modification for ax&symmetrical flows f 
It has been shown in Paper 1 of the series that a 

transformation introduced by Mangler [IS] permits 
problems with axi-symmetrical geometry to be trans- 
formed into equivalent two-dimensional problems. 
Although the proof given in Paper 1 related solely to 
the momentum equation, it applies to the b-equation (2) 
with equal force. 

As a consequence, the procedure of the last section 
should be modified, in order to predict mass-transfer 
rates in axi-symmetrical systems, to: 

Step (i) As above. Choose also a reference radius RO. 
__~ 

t Sections 3.3 and 3.4 are so similar in spirit to the 
corresponding sections of Paper 1 as to be unneces- 
sary for reasonably expert readers. They have been 
included here, in small print, for the use of readers 
who are concerned with the practical use of the 
method but not so familiar with boundary-layer 
theory as to be able to work out the steps for 
themselves in a short time. 
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Table 6. Comparison of 021aF, and ~~P(A~~/~)(duc/dx) from 
Table 2 (u = 0.7) and Tub/e 3 (o = co) jbr /3 = 0 and 

/3 = 1 and several B values 

----8 \ fi 0 : ! 0 0.7 

B j (Table 2) (Taie 3) 
---- 

_‘_ 

I_ 

-0.8 
-0.6 
-0.4 
-0.2 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

1.010 
2.48 
4.40 
6.64 
9.23 

26.8 
51.9 
86.8 

129.3 
181.2 
244 

~ 314 
, 392 

481 
j 575 

1.689 
3.28 
4.98 
6.80 
8.12 

19.79 
33.0 
48.1 
65.0 
83.5 

103.6 
125.1 
148.0 
172.4 
197.9 

uZ! 3(A ,‘/v)(duc/dx) 

1 

0.7 
(Table 2) (Taze 3) 

0.879 0444 
1.170 0.862 
1.748 1.309 
248 1.786 
3.24 2.29 
8.10 5.20 

13.90 8.68 
21.1 12.65 
29.0 17.09 
37.8 21.9 
47.9 27.2 
58.4 32.9 
69.9 38.9 
82.0 45.3 
94.7 48.5 

Step (ii) Define non-dimensional quantities as follows: 

x** ==I (l/L) j; (R/R# dx (26) 

A,** - A, (R/R,) d(U/Lv) (27) 

where R is the distance of the surface element from the 
axis of symmetry. 

The differential equation to be solved thus becomes:- 

dA **2 
ue** _%_ = Fp due** 

dx** 
A,**“_ 

dx** ’ 
B, D . (28) 

Step (iii) From the data of the problem, and from (25) 
and (26) tabulate values of ue** and duo**/dx** for 
various values of x** 

Step (iv) Solve (28) by standard procedures, referring to 
the appropriate table for values of E4. [Note that A,**2 
(duG**/dx**) is identical in value with (AIZ/~) (duc/dx), by 
reason of the definitions.] 

3.4. Starting conditions 
The solution of a first-order differential equation 

requires the specification of a boundary condition. This 
is usually given, in boundary-layer problems, at the 
upstream extremity of the boundary layer where it is 
usual to take x (or x*, or x**) as zero. The three important 
cases arising in practice will now be discussed. 

Body with a sharp leading edge. If the leading edge of the 
surface engaging in mass transfer is sharp, the boundary- 

layer thickness is zero there. The starting condition for 
the numerical integration is thus: 

x = 0, A, = 0. (29) 

Although this condition is quite adequate from the mathe- 
matical point of view, provided that UG is not 
simultaneously zero, it should be remembered that the 
conclusion that A, = 0, is unrealistic in practice for two 
distinct reasons. The first reason is that no practical edge 
can be sharp, in the sense of having zero radius of 
curvature; the second is that the boundary layer equations 
themselves cease to be valid in the vicinity of an edge. 
These facts are well known and require no detailed 
comment here. 

Stagnation point of a two-dimensional body. The second 
important case is that of the two-dimensional surface 
which does not possess a sharp leading edge. Such a 
surface exhibits a stagnation point, in the neighbourhood 
of which the velocity outside the boundary layer increases 
linearly with x, the zero of the latter dimension corres- 
ponding with the stagnation point. Thus we have: 

(30) 

suffix 0 here indicating the vicinity of x = 0. 
The difficulty presented by this case is that the starting 

condition does not immediately yield an initial value of A,* 
with which to begin the integration. The way out of the 
difficulty lies through the recognition that (23) ensures 
that F4 equals zero where UG* equals zero,t i.e. at x* = 0. 
Now, since Band o are known, thevalue ofA,** (duo*/dx*) 
for which F4 = 0 can be learned by inspection of the 
tables of the auxiliary function, Fp. The starting value of 
the boundary-layer thickness is then deduced from: 

A4*2 = k,*“$$]/(;!!;j. (31) 

Equation (31) is easily evaluated since (duc*/dx*), is 
given in the data of the problem. It is equal to (L/U) 
(duc/dx),. Clearly A, *2 is independent of x* near the 
stagnation point. 

Stagnation point of an axi-symmetrical body. Near the 
stagnation point of an axi-symmetrical body, the velocity 
distribution is given once more by the equation: 

due, 

UG= dx,,X’ f---i 

This starting condition fails to show immediately what is 
the initial value of A,**, and therefore must be re-arranged 
before the numerical integration of equation (28) can 
begin. This re-arrangement now follows; the useful 
result will be found in the last two paragraphs of the 
present section. 

A characteristic of the stagnation-point region is that 
x and A are identical there. 

t Unless dA,*‘/dx* is infinite, which is physically- 
implausible. 
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Insetting this fact in the definition (26) and integrating. 
we deduce the relation between x** and x; it is: 

(33) 

Replacing YG and x in (32) by uG** and x**, we then 
deduce : 

Uc** _ (3LR,Y .duc x*+I,3 _ ._- - .-. 
u (~--I dx, ’ (34) 

This exponential relation between &** and x** ensures 
that locally the boundary layer is described by one of the 
exact “similar” solutions of the boundary-layer equations. 
Which solution is relevant is discovered in the following 
way. Since the boundary layer is “similar”, the two 
quantities (J,**2 dzco**/dx**) and (uc** dd,**2/dx**) 
(i.e.FJ havefixedvalues. What arethesevalues?Evidently, 
by reason of (34): 

duo** ‘/j,**z___ 
dx** 

which can be re-written as: 

(36) 
~_llu_. \_dx,, 

Differentiating (36) we deduce: 

dA,**” .-.. _ . . ..-.... ~- 
dx** 

x**ul!” (37) 

which can be re-written, by reason of (34) as: 

Equation (38) is the relation which enables us to find 
the starting condition for the numerical integration; 
for it tells us that we must find that value of Fp, for the 
prescribed values of B and CT, which is twice the cor- 
responding value of A,**2 dzzc**/dx*+. Such values lie on 
lines of slope 2 in Figs. 5 and 6; reference to these, or 
corresponding tables, is the best way of determining the 
required quantities. 

Once the value of A,**2 duo**Jdx** has been found in 
this way, values of LI,**~ can be evaluated in the vicinity 
of x** = 0 from equation (36). Numerical integration of 
(28) can now proceed without difficulty. 

3.5. Quadrature procedure 
The parallels between the procedure recom- 

mended in the present section and that for the 
velocity boundary layer in Paper 1 are so close 
and numerous as to make comment unnecessary. 

Certainly it will be no surprise to find that 
quadrature procedures for solving equations 
( 17), (23) and (28) are as helpful here as they 
were found to be in Paper 1. The use of the 
quadrature procedure is the main point in which 
the method of Smith and Spalding {S, 191 
differs from that of Eckert 26, 151. We shall 
first describe the quadrature method, and 
provide tables of the relevant quantities. Finally 
the method will be still further simplified in the 
interests of speedy computation. 

Lineur approximations to the F4 functions. The 
quadrature procedure derives from the recog- 
nition that the curves appearing in Figs. 5 and 6 
can be approximately represented by straight 
lines. Indeed, without approximation, we can 
write : 

wherein p and q are functions of B and CT alone. 
while E4 is a function of B, CT and 

(Q’4 (ducldx). 

The point of the substitution (39) becomes 
apparent if we choose p and q so that E, is small. 
This may be done by making p equal to the value 
of F4 when @Q/V) (duo/dx) is zero, and making 
q equal top divided by the value of(d;“/v)(duc/ds) 
where F4 is zero. The significance of these 
substitutions is shown by Fig. 7. The curve is a 

FOG. 7. Sketch illustrating the significance of p, y 
and Ea. 
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representative member of those appearing in 
Figs. 5 and 6, valid for a particular B and o; 
the broken straight line is the linear approxima- 
tion to the curve, and the vertical distance 
between the line and the curve is a measure 
,of -E4. 

Values of p and q and E4 corresponding to the 
curves appearing in Figs. 5 and 6 are given in 
Tables 4 and 5. In the case of Table 5, p and 
E, are of course multiplied by u213. 

Solution as a quadrature. Equation (17) can 
now be combined with (39) to give, for two- 
dimensional boundary layers : 

UG dA: 

v dx 

A; duo E 
-~-- = p - q -; Jx + 4. (40) 

This equation may be integrated formally to 
give : 

Now since p and q have been chosen so as to 
make E, small, a first approximation to A, 
namely A,,r, is given by ignoring the second term 
in the bracket. We obtain: 

(42) 

Since p and q are known, for given B and (T, 
while uG is a known function of x, the right- 
hand side of (42) is easily evaluated. 

Although equation (42) will often give suf- 
ficient accuracy to warrant accepting A4,1 as the 
required value of A,, a second and better 
approximation, namely A4,11, may be obtained by 
the following procedure : 

(i) From (42) and given values of duc/dx 
evaluate Ai I duoldx at each x-station 
considered in the quadrature. 

(ii) Hence from Tables 4 and 5, evaluate 
E4,1, the corresponding value of E, for 
each x-station. 

(iii) Thereafter calculate A4,rr from the fol- 
lowing expression deriving from equation 
(41): 

A 4,11 = A2 + v s,: E4.1 uGq-’ dx “’ 
4.I 

uGg 
. (43) 

If desired, third and fourth approximations 
may be evaluated in a similar manner. Con- 
vergence is bound to be rapid since p and q have 
been chosen so as to render E, small. 

A general formula 
Quadrature formulae corresponding to equa- 

tions (41), (42) and (43) can of course be written 
in terms of the singly-starred and doubly- 
starred quantities of Sections 3.2 and 3.3. 
The latter transformation is however only 
desirable as an interim measure, indicating how 
the radius variation R/R, has to be introduced 
into the quadrature in terms of the singly- 
starred quantities. We may therefore adopt the 
following equation as the generally valid quadra- 
ture formula: 

A* = pJ (R/R$ u;“-’ ds* 
4 (R/R,,)~;;q~~~ .-- 

+ ~~?/R,j2 E, z&’ dx* 1’2 . (44) 
* 

(RIf4J2 sn I 

Two-dimensional flows can be treated by this 
formula by regarding them as limiting cases of 
axi-symmetrical ones, in which R/R, has a 
uniform value at all x* ; thus the R/R, terms 
vanish. The quantity E4 appearing in (44) is of 
course the same function of A:’ dui/dx* as it is 
of (da/v) (duojdx). 

The corresponding formula for the first 
approximation to A; is obviously: 

A* = 4 s;* (R/ROY u$-’ dx* 
4.1 

CRIRJ2 ~2 

(45) 

Further tlalues of p and q 
It would be impracticable to present tables 

such as Table 4 for all values of u. However, if 
the first approximation to the A, distribution is 
regarded as sufficiently accurate, the only 
auxiliary functions needed are p (B, a) and 
q (B, 0). These are provided in Fig. 8, which has 
been derived from the similar solutions contained 
in Paper 3; actually p ~3’~ is plotted instead of p 
for obvious reasons. 

Fig. 8, together with the quadrature formula 
(42) or (45), provide a convenient and simple 
means of predicting mass-transfer rates, often 
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FIG. 8. oz@p and q vs. f I -t B) for various values of ci, 

with acceptable accuracy, over a wide variety of 
conditions. 

4. APPLICATIONS OF THE METHODS OF 
CALCULATIONS 

4. I. introduction 
The remainder of the paper will be devoted to 

the presentation and discussion of particular 
applications of the methods of mass-transfer 
predictions. The examples are chosen because of 
their practical impo~ance, to illuminate a 
particular aspect of the theory, or to provide 
comparisons with the predictions of other 
authors. 

4.2. The a~i-symmetrical stagnation point 
Practical relevance. Mass transfer 

through the laminar boundary layers 
occurs 
which 

form at axi-symmetrical stagnation points in a 
number of practical circumstances, for example : 
at the front of a sphere of burning liquid fuel 
suspended in an air stream [20]; on the nose of a 
transpiration cooled space vehicle re-entering 
the earth’s atmosphere 1211; and on a pellet of 
ammonium perchlorate exposed to a perpen- 
dicular stream of hydrocarbon gas [22]. Al- 
though the fluid density and transport properties 
are actually non-uniform in all these cases, it is 
still valuable to have solutions to the differential 
equations of boundary layer for uniform pro- 
perties ; for, as has been shown [23], the variable- 
property solutions differ little from the uniform- 
property ones, in important respects. when 
appropriately plotted. 

The axi-symmetrical stagnation point is of 
course a situation which gives rise to a “similar” 
boundary layer; this means that the methods of 
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the present paper are not needed for the predic- 
tion of the boundary layer-parameters, values 
for which can be deduced directly from Paper 3. 
Nevertheless, the methods given in Section 3 
nluy be used; comparison of the results with 
exact ones gives an indication of the accuracy 
of the methods. 

Exact ~~~~~~~~~. Figs. 9 and 10 contain plots 
of u213 g/&p dtdo/dx)1/2 and C&p dUo/dx)ri2 
respectively. The abscissa is B and the parameter 
is u. The curves have been constructed from the 
exact values presented in Paper 3, filled out by 
the use of the I (J, R) Tables there presented; 
they can be taken as accurate within 12 per cent. 

Fig. 9 is qualitatively similar to one presented 
for the two-dimensional stagnation point in 

4 

FIG. 9. Values of dimensionless mass-transfer 
conductance for the axi-symmetrical stagnation 

point (6 = # obtained as indicated in text. 

Paper 3 (Fig. 6 of that paper); as usual, the 
conductance decreases as the driving force 
increases.‘Fig. 10 shows the influences of B and 
u on the mass-transfer rate more directly. 

Solutions obtained by the j&-St Qpp$5x~rn~tjo~ 
of Section 3.5. It has been explained already in 
Section 3.4 that, at the axi-symmetrical stagna- 
tion point, no is proportional to x [equation 
(3O)l and x is equal to R. In these circumstances 
equation (45) yields: 

-I 0 2 4 6 8 IO 

Frc. 10. Values of the dimensionless mass-transfer 
rate at the axi-symmetrical stagnation point (/? = 4) 

derived from Fig. 9. 

Returning to physically significant quantities by 
way of (24), (20) and (21), we obtain: 

= gI = (l/a) [(q + 2) PP (dw/dx>/Pl”‘2 I 

(47) 
wherein the subscript I serves as a reminder that 
the first approximation is in question. 

Fig. 11 contains a plot of $I3 gI/[pp duo/dx]*/2 
against B for various CT, obtained by evaluating 
(47) with the aid of the p and 4 values contained 
in Fig. 8. comparison with Fig. 9 shows good 
qualitative agreement, and a quantitative agree- 
ment within 5 per cent over most of the range. 
The disagreement between the first approxima- 
tion and the exact values becomes greatest when 
B is large and LT is small. 

~5l~t~o~~ obtained by iteration. When the 
error term E4 is introduced into the A, expres- 
sion, as indicated by equation (44), (46) must 
be replaced by: 

P + E4 

I 

l/2 

A: = 
(q + 2) (du,$F) (48) 
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B 

FIG. I 1. Values of dimensiontess mass-transfer 
conductance for the axi-symmetrical stagnation 
point (/3 = &), obtained by the first approximation of 

Section 3.5. 

where & depends on (Qv) duojdx, B and on o, 
as is shown by Table 4a, for example. 

As an illustration of the use of the latter table, 
we determine the value of 0: for o := O-7 and 
B = I ; for this case, p = 34.0 and q --- 3.37. 

The first approximation, with E4 set equal to 
zero in (481, yields 

(49) 

Interpalation in Table 4a thus yields a value of 
E&J equaf to -2-6. Insertion of this quantity 
into (48) leads to the second approximation for 
d: in the form: 

The resulting second approximation is cor- 
respondingly found from TabIe 4a, to be -2.8, 
substitution of this value in (48) yields the third 
approximation for L.I~ in the form: 

A .2 dur: 
34 - 2.8 

Ml1 &S = ” .. -- - = 3.37 -j- 2 581. (511 

We may conclude that convergence is rapid; 
the first approximation for A: is only about 

4 per cent too large while the second is already 
within 4 per cent of the asymptotic value. 

Of course the asymptotic values are identical 
with those of Figs. 9 and 10, since Table 5 has 
been derived from the same family of exact 
solutions as have Figs. 9 and 10. There is there- 
fore no point in making further comparisons. 

Concerning the calidity of the Chilton-Colburn 
analogy. In analyses of melting ablation at the 
axe-symmetrical stagnation point, Adams and 
3ethe f24], and Lees [Ii%], have assumed that 
the shear stress at the interface is related to the 
mass-transfer conductance as follows : 

YSEO _ 
z*Gga2’” = I. 

This relation represents a modification of the 
Reynolds analogy introduced by Chilton and 
Colburn [26]. 

The data in Fig. 9, together with those col- 
lected in Paper 1 and 2, enable us to test this 
assumption comprehensively. The result of the 
test is shown in Fig. 12. Evidently the Chilton- 
Colburn analogy under estimates the ratio of 
shear stress to mass-transfer conductance; it 
expresses the effect of CT only at large G. 

FE. 12, A test of the ~hi~ton-~olb~~ anaIogy for the 
axi-symmetrical stagnation point. Curves would 
collapse into a horizontal with unity ordinate if 

analogy were correct. 
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Fig. 13 contains, for interest, a corresponding 
test of the Chilton-Colburn analogy for the two- 
dimensional stagnation point. Similar conclu- 
sions may be drawn. 

B 

FIG. 13. A test of the Chilton-Colburn analogy for 
the plane stagnation point. 

0.9 40 
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FIG. 14. Solution for transpiration cooling of a FIG. 15. Comparison of solutions for the transpira- 
cylinder (by the method of Section 3). Dotted lines: tion cooling of a cylinder with B = I and D = 0.7. 
1st approximation; solid lines: exact solution of (i) By the method of Section 2. (ii) By the method of 

equation (17). Section 3. 

4.3. The transpiration cooling of a cylinder 
We return now to the problem discussed in 

Section 2.3; instead of the extended Seban- 
Drake method, however, we here use the methods 
described in Section 3.5. 

The results are shown in Fig. 14 wherein 
(#1//L) (Ul/V)1’2 and (d,/1) (Ul/~)l’~ are plotted 
against x/l. The broken curves are those ob- 
tained by the use of equation (42); the full 
curves result from the evaluation of (41) by 
successive approximations and so may be 
regarded as satisfying equation (17) exactly. 
Clearly the first approximation differs only 
slightly from the exact solution. 

The mass-transfer rate deduced from the 
method of Section 3 is compared in Fig. 15 
with that deduced earlier. Here it is evident that 
the two results are in agreement at the stagnation 
point but differ appreciably elsewhere. The 
agreement is to be expected, since the flow near 
the stagnation point is a “similar” one; as to the 
disagreement, there is no present way of telling 
which curve is more “correct”, although it may 
be regarded as relevant that the Section 3 
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method agrees better than the Section 2 method 
with experimental data on heat transfer from 
cylinders in the absence of mass transfer [14]. 

4.4. The sphere 
The application of the theory to axi-sym- 

metrical bodies has been discussed in Section 
3.4. The problems of burning of fuel droplets, 
transpiration cooling of nose cones, etc. are 
examples of this application. To illustrate it, we 
consider the burning of fuel droplets at Reynolds 
numbers which are high enough for a boundary 
layer to form over the front half of the sphere. 
The mainstream velocity distribution over the 
front portion of a sphere under these conditions 
[27] is shown in Fig. 16; this has been used, in 

FIG. 16. Velocity distribution over the front portion 
of a sphere [27]. 

conjunction with the method of Section 3.5, to 
permit the calculation of the mass-transfer rate. 
The results for various B are shown in Fig. 17 
in the form of a plot of (ti”I/p)/d(Uf/~) against 
x/I wherein dotted lines are first approximations 
and solid lines second approximations. The 
latter are sufficiently exact (Section 4.2). 

Experimental data are available for the 

average burning rate, %I’, for the whole surface 
of a sphere of burning liquid fuel [20]; a smooth 
curve through these data is shown by the broken 
line in Fig. 18. The transport-properties p and 

p have been inserted at their free-stream values 
in evaluating the dimensionless value 

The prediction of Fig. 17 can be compared 
with the experimental data only if an assumption 

0.5 

0 0.1 0.2 0.3 0.4 0.5 0.7 

X/l 

FIG. 17. Dimensionless mass-transfer distribution 
over the front portion of a sphere. 

- - - - 1st approximation, 
-2nd approximation. 

,/_- 
// 

Experimental /’ 
curve. ,’ 

/ 

I I I I 

2 4 6 6 

8 

FIG. 18. Average dimensionless mass-transfer rate 
for a sphere. The theoretical prediction neglects the 

contribution of the rear half of the surface. 
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is made concerning the contributions of the rear Driving force. For steel comprising iron and 
half of the sphere to the total burning rate. carbon, the driving force can be written [28] as: 
Since it is known that this contribution is much 
less than that of the front half at this Reynolds 

(1 -. n&i - n, B = _ --_.______~ mO,G 
number, we shall assume that it is zero. Then a 
theoretical value of G”/d(ppU/l) can be where 
obtained from Fig. 17 by evaluation of the 
Q uadrature : 

(1 - n&i - ncrc 
(54) 

B = driving force, 
n, = mass of carbon per unit mass of 

steel. 

The corresponding curve is marked as a full 
line in Fig. 18. 

It is seen that the experimental and theoretical 
curves lie close together. The latter lies some- 
what below the former as is to be expected; for 
the complete neglect of mass transfer from the 
rear half of the sphere is certainly too extreme an 
assumption. 

In deriving equation (54), the oxygen con- 
centration at the surface of the steel has been 

4.5. The flat plate 
As a final example of the application of the 

present methods, we consider the burning of 
steel from a flat surface along which flows a 
stream of oxygen; it will be supposed that the 
boundary layer is laminar. This example is 
chosen more so as to emphasize the practical 
applicability of the theory as a whole than 
to illustrate the mathematical techniques which 
form the focus of attention in the present paper; 
for the boundary layer on a flat plate is of course 
a “similar” one. 

~ 

Nature of process. In the process of burning 2 

of steel, oxygen diffuses to the surface of steel and 7 
reacts with it to form iron oxide and carbon S 
monoxide. Being non-volatile, the iron oxide =* 
pours away from the surface of the steel as 5 

liquid slag. Consequently, the net substance 
transferred to the combustion face of steel is the 
amount of oxygen diffused to the surface 
minus the amount of carbon monoxide formed. 
Moreover, the reaction between oxygen and 
steel is exothermic, and most of the heat of 
reaction is used in melting the steel. This 
molten metal also pours away from the surface. 
The total rate of disappearance of steel from the 
surface is, therefore, the sum of the burning 
rate and the melting rate; it can be calcuiated 
from, a knowledge of the gas transferred to the 
surface of steel, the reaction heat balance and 
the composition of the steel. 

rC = mass of oxygen which combines 
with unit mass of carbon to 
form CO, 

ri = mass of oxygen which combines 
with unit mass of iron to form 
Fe,O,, 

mo,o = mass fraction of oxygen in main 
gas stream. 

I 

0.5 1.0 

1 

B 

FIG. 19. (~x/~~/~(~x/“) vs. B for flat plate and 
various 0. 

calculated curves 
0 experimental values for combustion of 

0.195 % C-steel in oxygen stream (from [29]). 
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taken as zero; this is justifiable when the surface 
temperature of the steel is high. 

Dimensionless mass-transfer rate. For a given 
value of 3, as obtained from (54), we can deter- 
mine the corresponding value of (ti”,/p),/ ~(UX/V) 
for fl = 0 and various D from the graphs of Fig. 
19 which have been derived from Figs. 2 and 5 
of Paper 3 [23]. 

Comparison with experimental results. Also 
plotted in Fig. 19 are points obtained experi- 
mentally for the burning of O-195 7; C-steel by 
Wells f29j. This reference gives the rates of steel 
disappearance (burning rate plus melting rate): 
we have converted them to our notation of the 
form : (+‘x,/p)/( l/x/v) versus& In the conversion, 
the heat loss due Co radiation and conduction 
of steef is neglected, and the property values of 
the stream are obtained from Kaye and Laby 
f303 at a reference temperature of 770°C which is 
the mean of the temperature of the main gas 
stream and the melting point of the steel; o is 
taken as 0.7. 

It is seen that the agreement between the 
experiments and the theoretical prediction 
(U = O-7 line in Fig. 19) is good, It ,should be 
mentioned that Wells [29] also presented a 
theoretical analysis of his results which, though 
in a different and less general form than the 
present one, made use of similar assumptions 
and led to the same satisfactory agreement with 
experiment. 

5. CONCLUSIONS 

(a) SimiIar methods to those presented in 
Paper 1 for the velocity boundary layer 
have been developed for caleuIating the 
rate of mass transfer through laminar 
steady uniform-property boundary layers 
when the surface and transferred-substance 
conditions are uniform. 

(b) The recommended method is represented 
by equation (44): equation (45) is easier 
to use but somewhat less accurate. 

(c) Where checks have been made, agreement 
between theory and experiment is satis- 
factory. 

(d) it is shown that a commonly made assump- 
tion regarding the Chifton-Colburn rela- 
tion between the surface shear and the 
surface conductance for heat and mass 

transfer is considerably in error for the 
axi-symmetrical and two-dimensional stag- 
nation points. 
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APPENDIX A 

Method of calculation qf the F4 function for (I + CG 
(For full explanation of notation, see 
Paper 3) 

When o tends to infinity, the procedure 

described in Section 4.4 of Paper 3 may be 
modified as follows: 

(i) Since B remains finite, equation (26) of 
Paper 3 dictates that fO tends to zero as u -+ co. 

(ii) The corresponding value off,“, obtained 
from the solutions of the velocity equation 
given in Paper 2, therefore depends only on /I. 

(iii) The choice of c is unnecessary. 
(iv) J is now best written as -B/I; K is zero by 

reason of equation (53). 
(v) A choice of J now gives a value of I 

directly from Table 4 of Paper 3. 
(vi) Hence such a choice leads to values of 

and of B; for the former equals I, from equation 
(51) of Paper 3, while the latter equals --IJ as 
just shown. 

(vii) Since 

t&l dA; 
us/3 -;- dx = 2( 1 - /j) $13 (Al) 

-0.19 
-0-18 
-0.16 
-0.15 
-0.14 
-0.10 
- 0.05 

0 
0.1 
0.2 
o-3 
0.4 
0.5 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
18 
2.0 
2.2 
2.4 

0.0860 
@1285 
0.1905 
0.2161 
0.2395 
0.3191 
0.4008 
0.4696 
0.5870 
0*6869 
0.7748 
0.8542 
0.9277 
0.9960 
1*1200 
1.2326 
1,336 
1.431 
1.521 
1606 
1.687 
1.764 
1.837 

40.34 - 3.220 
30.60 -2.334 
23.14 - 1596 
21.08 -1,375 
19.52 - 1,199 
1556 -0.7071 
12.75 -0.0304 
IO.93 0 
8.478 0.4710 
6.786 08483 
5.480 l-1743 
4.401 1.4671 
3.472 1.736 
2649 1.987 
1.225 2449 
0 2.873 

- I +089 3.266 
- 2.080 3641 
- 2.997 3.996 
- 3.852 4.337 
-4.660 4.660 
- 5.428 4.976 
-6.164 5.284 
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and 

from equations (36) and (35) of Paper 3 respec- 
where in I is a function only of B and ,f;,” is a 

tively, we can write the following relations for 
function only of /3. 

The last-named functions are contained in 
the quantities appearing in Table 3 and Fig. 6: Tables Al and A2. The former is deduced from 

the f0 = 0 data in Table 1 of Paper 2; the latter 

F,S3 = 2(1 - ,B) I2 (A3) 
is deduced from the K = 0 data of Table 3 of 
Paper 3. 

Table A2. J, I, B and I’ for o -* x 

J 1 
_- 

1’ J 
__- 

0 0.8930 0 0.7974 0 
0.10 0.8495 -0.0850 0.7217 -0.1 
0.20 0.8090 -0.1618 0.6545 PO.2 
0.30 0.7713 -0.2314 0.5949 --0.3 
0.40 0.7362 - 0.2945 0.5420 -0.4 
0.50 0.7035 -0.3517 0.4949 PO.5 
0.60 0.6729 - 0.4037 0.4528 -0.6 
0.70 0.6443 -0.4510 0.4151 -0.7 
0.80 0.6175 - 0.4940 0.3813 -0.8 
0.90 0.5924 --0.5332 0.3509 -0.9 
J ,oo 0.5688 -0.5689 0.3235 - 1.0 
1.10 0.5468 -0.6015 0.2990 -1.1 
I.20 0.5260 -0.6313 0.2767 -1.2 
1.30 0.5065 --0.6585 0.2565 -1.3 
1.40 0.4881 -0.6834 0.2382 -1.4 
1.50 0.4708 - 0.7062 0.2217 .- 1.5 
1.60 0.4544 - 0.7271 0.2065 -1.6 
1.70 0.4390 ~- 0.7463 0.1927 --I,7 
1.80 0.4244 -0.7639 0.1801 --1.8 
1.90 0.4106 -0.7801 0.1686 -1.9 
2al 0.3975 - 0.7950 0.1581 -2.0 
2.10 0.3851 -0.8087 0.1483 -2.1 
2.20 0.3734 -0.8214 0.1394 -2.2 
2.30 0.3622 -0.8331 0.1319 -2.3 
2.40 0.3516 --0.8438 0.1236 -- 2.4 
2.50 0.3415 -0.8538 0.1166 -2.5 
2.60 0.3319 -0.8630 0.1102 -2.6 
2.70 0.3228 -0.8715 0.1042 -2.7 
2.80 0.3141 --0.8794 0.0987 -2.8 
2.90 0.3058 -0.8867 0.0935 -2.9 
3aO 0.2978 -0.8935 0.0887 -3.0 
3.25 0.2795 -0.9084 0.078 1 -3.25 
3.50 0.263 1 - 0.9209 0.0692 --3.50 
3.75 0.2484 -0.9314 0.0617 -- 3.75 
4.00 0.2350 -0.9402 0.0552 ~ 4.00 
4.25 0.2230 -0.9476 0.0497 -4.25 
4.50 0.2120 -0.9540 0.0449 -4.50 
4.75 0.2011 - 0.9594 oa404 -4.75 
5aO 0.1928 - 0.9641 0.0372 - 5.00 

B( I- - IJ) I 
___ 

0.8930 
0.9398 
0.9903 
I GM8 
I.1037 
.I674 
.2364 
.3112 
.3924 
.4806 
.5766 
.6812 
.7954 

I .9200 
2.0563 
2.2056 
2.3692 
2.5488 
2.7462 
2.9635 
3.2028 
3.4669 
3.7586 
4.0813 
4.4386 
4.8348 
5.2747 
5.7637 
6.3079 
6.9145 
75913 
9.6536 
12.396 
16,072 
21.036 
27.792 
37.054 
49.848 
67.649 

B( -I./) 
-____ 

0 
0.0940 
0.1981 
0.3135 
0.4415 
0.5837 
0.7418 
0.9178 
I.1 139 
I .3325 
1.5766 
1.8494 
2.1544 
2.4960 
2.8788 
3.3084 
3.7907 
4.3330 
4.9432 
5.6306 
6.4057 
7.2805 
8.2690 
9.3869 

10.653 
12.087 
13,714 
15.562 
17-662 
20.052 
22.774 
31.374 
43.387 
60.270 
84,145 

118.115 
166.743 
236.78 
338.25 

------ 

0.7974 
0.8832 
0.9807 
I.0916 
I.2182 
1.3268 
1.5287 
I.7192 
1.9388 
2.1922 
2.4857 
2.8264 
3.2235 
3.6864 
4.2284 
4.8647 
5.6131 
6.4960 
7.5416 
8.7823 

10.258 
12.019 
14.127 
16.657 
19.701 
23,375 
27,822 
33.220 
39.790 
47.810 
57.628 
Y3.192 

153.67 
258.3 I 
442.52 
772.338 

1373.0 
2484.8 
45764 
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R&n&--Les solutions exactes des equations de la couche limite laminaire 6. proprietes constantes 
presentees dans un article p&c&lent sont utilisees pour le d~velop~ment de methodes approchees 
permettant de calculer les coefficients de transport de masse dans Ie cas de surfaces b~dimensionnelles 
ou de revolution, la vitesse de I’Gcoulement principal &ant arbitraire et les conditions de la mat&e 
transport&e et de l’interface &ant constantes le long de la surface. Le taux de transport de masse est 
obtenu avec une precision suffisante dans bien des cas, & partir du calcul dune settle quadrature ou 
figureent la vitesse de l’ecoulement principal et des constantes dependant du nombre de Prandtl/ 
Schmidt; on propose une methode d’iteration pour ameliorer un peu la precision. La methode est un 

d~velop~ment de celle d’Eckert et Livingood et fait usage du pro&de de quadrature de Walz. 

Zusammenfassung-Die exakten Losungen der laminaren Grenzschichtgleichungen mit einheitlichen 
Stoffeigenschaften wurden in friiheren Arbeiten dieser Reihe angegeben. Hier dienen sie dazu, 
Naherungsmethoden zur Bestimmung des Stoffiiberganges an zweidimensionalen und achssym- 
metrischen Oberflachen bei beliebiger Hauptstromgeschwindigkeit zu entwickeln, soweit die Stoff- 
eigenschaften der Trennfltiche und der tibertragenen Substanz entlang der Oberflache einheitlich 
bleiben. Die Stoff~bergangsgeschwindi~eit llsst sich fur viele Zwecke geniigend genau durch 
Auswertung einer einzigen Quadratur erhalten, die die Hauptstromgeschwindigke~t und die von der 
Prandtl~Schmidt~l abhlngigen Konstanten einschliesst. Mit einem angegebenen Iterationsverfahren 
lasst sich die Genauigkeit etwas steigern. Die Methode ist nach jener von Eckert und Livingood unter 

Bentltzung des Quadraturverfahrens von Walz weiterentwickelt. 

AHHuTsu(llrr-nOnyYeHHbIe B fIpeubI;[)‘qPfX CTaTbfIX TOqHbIf! ~WIeHLfR ypaBIIeHI<ir nantlaap- 
noro IIorpaumiHoro CJIOR c fIOCTORHKbIMIf xapaurepucrutia~m IfCIIOJIb3-$OTCR &xx paa- 
p36OTKIf ~P~~~~~eHHbI~ bfeTOfiOB p~C=Ii?Ta CECOpOCTIf IIepeHOca MaCCbl C ~B~M~pH~X If 

~~e~li~f~leTp~~H~X ~OBe~)XH~CTe~ fI$Wf ~~0~3BO~bHO~ CIiOpOCTIS O~I~OBHOrO IIOTOIi8, ~IOCTOFIH- 

HbIX )WIOBHFIX Ha IIOBepXHOCTLf pa3~eJEl M IIOCTORHHbIX ~CJIOBlIHX IIt?peHOCa Betr(t?CTBa BfiO;rb 

IIOIE’pXHOCTSf. AJIB MHOrlfX CJIJFIaeB CIiOFOCTb IIepeHOCa RfaCCbI IIO;I)‘W?Ha C fiOCTaTOqHOti 

TOqHOCTbfO O;[HOfi HBaQaTypOfi, BIUIIOIIaIOU~~~ CKOPOCTb OCHOBHOrO IIOTOK.9 IZ ROCTOFIHHbIe, 

3aBEfCR~5W OT K;p&fTepIlR: ~paH~TJIJI/~Mtf)JTa. npOBej(eH IIOBTOpHbIfi PaCWT, HeCKOJIbKO 

IIOBbIUINOU(M~ TOqHOCTb. &HHbIfi MeTOR HBZIRBTCFL PSIBIfTEfWvf M!?TO&$ &W!pTa I, &BlIH- 


