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Abstract—Exact solutions of the uniform-property laminar-boundary-layer equations, presented in
earlier papers of the series, are used in developing approximate methods for predicting mass-transfer
rates from two-dimensional and axi-symmetrical surfaces with arbitrary main-stream velocity when
the interface and transferred-substance conditions are uniform along the surface. The mass-transfer
rate is obtained sufficiently accurately for many purposes from the evaluation of a single quadrature
involving the main-stream velocity and constants which depend on the Prandtl/Schmidt number;
an iterative procedure is presented which increases the accuracy somewhat. The method is a develop-
ment of that of Eckert and Livingood, and makes use of the quadrature procedure of Walz.
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NOMENCLATURE
dimensionless flux property, equation
(2);
gradient of b adjacent to the interface,
equation (Al) and Paper 3;
dimensionless driving force, equation
(1);
constant-pressure specific heat of mass
stream, Btu/lb degF, footnote Section
2.3;
constant-pressure  specific  heat of
coolant, Btu/lb degF, footnote Section
2.3;
correction factor for F,, equation (39);
equal to (ug/v) (d4%/dx), equation (39);
dimensionless stream function at inter-
face, Appendix (A);
dimensionless velocity gradient at inter-
face, Appendix (A);
total mass-flux vector, Ib/ft? h, equation
(2);
surface conductance for mass transfer,
Ib/ft? h, equation (1);
integral of equation (51), Paper 3;
coefficients in equation (51), Paper 3;
cylinder diameter or sphere diameter,
ft, Figs. 14, 17;
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L,
m,

mo, G,

Us,

reference length, ft, equation (21);
mass fraction of a substance, equation
(5);

mass fraction of oxygen in main
stream, equation (54);
mass-transfer rate
Ib/ft? h, equation (1);
mass of carbon per unit mass of steel,
equation (54);

conserved property, equation (4);

see equation (40) and Fig. 7;

distance of point on surface from axis
of symmetry, ft, equation (26);
reference radius, ft, equation (26);
constant in Newton’s second law of
motion, Ib ft/Ibf h?, equation (52);
temperature, degF, footnote Section
2.3;

mass of oxygen which combines with
unit mass of iron, equation (54);

flow velocity in x-direction, ft/h;

# in main stream, ft/h, equation (6);
flow velocity approaching cylinder or
sphere, ft/h, equation (20);

flow velocity in y-direction, ft/h;

v at surface, ft/h, equation (7);
distance measured along wall in same
direction as mainstream, ft, equation

6);

per unit area,
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v, perpendicular distance from wall, ft,
equation (3);

z, distance perpendicular to x and y, ft,
Table 1.

Greek symbols
B, a constant related to pressure gradient,
equation (6);
3, momentum thickness, ft, equation (7);
4,,  convective thickness, equation (18);

4,,  conductive thickness, equation (6);

¥, exchange coefficient, Ib/ft h, equation
(2);

s dynamic viscosity, Ib/ft h, equation
(15);

¥, kinematic viscosity, ft¥/h, equation (6);

P density, Ib/ft}, equation (8);

a, Prandtl or Schmidt number, equation
(6);

7s,  shear stress at wall, Ibf/ft?, equation
(52).

Subscripts and Superscripts
G, main-stream state, equation (4);

S, state adjacent interface, equation (4);

T, state of transferred substance, equation
(4);

0, axi-symmetrical stagnation point, equa-
tion {32);

* non-dimensional quantities defined by

equations (20-22);

**,  non-dimensional quantities defined by
equations (25-27);

1, Ist approximation, equation (42);

1I,  2nd approximation, equation (43);

[H, 3rd approximation, equation (51).

INTRODUCTION

1.1. Purpose of the paper

THE PRESENT paper is the fourth of a series,
intended to provide methods for predicting
rates of mass transfer through laminar forced
convection uniform-property boundary layers.
Papers 1 and 2, [1, 2] were devoted to methods
of calculating the properties of the velocity
boundary layer when the mass-transfer rate is
specified. Paper 3, [3] considered the “similar”
solutions of the differential equation for the
distribution of a conserved property; it therefore

D. B. SPALDING and S. W. CHI

dealt with problems of the standard mass-
transfer type, but was restrlcted to simple
geometrical circumstances.

In the present paper we turn to the general
problem: the prediction of mass-transfer rates
without restriction as to free-stream velocity
distribution. The method to be presented here is
not the most general or most accurate; but it
probably possesses the most useful combination
of accuracy, ease of use and range of validity of
all those currently available. A more accurate
and generally valid method will be presented in
Paper 5 of the series; this will be found however
to involve appreciably greater computational
difficulty than the present one.

1.2. The problem to be solve

Expressed in physical terms. We consider a
surface of prescribed shape, immersed in a
fluid stream (Fig. 1). We suppose that the

f s
“

Stagnation
point

Fi1G. 1. Mustrating the problem of calculating mass-
transfer rates.

velocity of the stream outside a relatively thin
boundary layer, ug, is given for all points on the
surface. In addition, we postulate knowledge of
the values of at least one conserved fluid
property (e.g. enthalpy, or mass fraction of an
inert chemical compound) for three fluid states:
that of the main stream (G), that of the fluid
adjacent the surface (S), and that of the sub-
stance transferred into the stream (T). The
problem is to determine the rate (e.g. in 1b/ft® h)
at which material is transferred across the pre-
scribed surface into (or, of course, out of) the
main stream. This quantity will be denoted by
m'’.

In order to give geometrical significance to
some of the important quantities, it is customary
to define, and to focus attention on, certain
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to which the
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mass-transfer flux is directly reiated. The prob-
lem then becomes that of predicting the appro-
priate thickness of the boundary layer at all
points of the surface.

Our problem arises in connexion with many
natural and technological processes, including:
drying of wet material in an air stream; combus-
tion of a liquid fuel; dissolution of a salt in a
liquid stream; “ablation™ of the nose-cone of a
space-vehicle re-entering the earth’s atmosphere;
condensation of steam on a cold surface; and
many others.

Expressed in mathematical terms, the formu-
lation which will be adopted is that of reference
[4], where it was shown that the mass-transfer
rate can be expressed as a product of a con-
ductance g, and a dimensionless driving force B;
thus:

wm' ' =g.R M
Further, the conductance is obtained from the
solution of a partial differential equation by
evaluating the gradient of a potential & at the
surface. The equation is:

— ViV =0 2)

where G is the total mass-flux vector (Ib/ft? h),
b is the dimensionless fluid property (potential),
equal to zero at the interface engaging in mass
transfer, and equal to B in the main stream.
y is an exchange coefficient (Ib/ft h), equal to a
diffusion coefficient times the fluid density, or to
the thermal conductivity divided by the specific
heat, according to the nature of the conserved
property for which & stands.

The relation between the conductance and the
gradient at the interface is:

ob
&= (y @)S/B

where y is distance normal to the interface,
suffix S stands for fluid conditions adjacent the
interface.

The driving force B is obtained by evaluation
of a suitable thermodynamic property, P, for the
fluid in the main stream (G-state), at the inter-

G . (Vb

3)
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face {S-state) and in the transferred substance

{T-state). The appropriate general relation is:

= “

For example, if water is vaporizing into (or
condensing from) an air stream, an appropriate
form of the driving force would be:

M0, G — MH0,s

B2 TERE

®

where mu,o is the mass of steam per unit mass of
local mixture (ib/lb} and mpyo, v = 1, since the
transferred substance consists entirely of H,O.
Other examples of the driving force B will be
found in [4]. In the present paper, however,
B can be regarded as a quantity whose value is
known: our task is to find means of evaluating g.

The mathematical expression of the problem
dealt with in the present paper is thus: find the
solution to (2) for the geometry and flow con-
ditions illustrated in Fig. 1, taking the G-
distribution from the relevant solution of the
equation of motion; then deduce g via (3), and
" via (1),

Restrictions on the scope of the inguiry are as in
earlier papers of the series. The flow is supposed
to be steady and laminar, and of sufficiently
high Reynolds number for a boundary layer to
form; the transport properties and the density of
the fluid are supposed uniform; the geometry of
the surface is such that the flow is either two-
dimensional or axi-symmetrical; and the main
stream can be regarded as large in extent so that
all its thermodynamic properties, Pg, are uniform
outside the boundary layer.

In addition, the method of the present paper is
restricted fo situations in which the relevant
properties of the fluid at the surface and in the
transferred substance, Ps and Pr, are uniform
over the surface.

1.3. Classification of methods

Except for those situations which give rise to
the “similar” boundary layers dealt with in
Paper 3, equation (2) is rarely solved exactly;
for it is a partial differential equation, requiring
numerical solution. Although the equation
degenerates, in a boundary-layer situation, from
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an elliptic to a parabolic form, and so becomes
amenable to forward integration, the computa-
tional labour is still prohibitive as a rule.

Approximate methods of solution are there-
fore used. These have mostly been developed to
deal with heat transfer in the absence of mass
transfer; this means that they provide approxi-
mate solutions to (2) for the particular case in
which B tends to zero. However the methods
can be made to apply to non-zero values of
B also, as will be seen.

The methods are of two classes, designated 1
and 11 in [5], but have one common feature: the
assumption, either implicit or explicit, that all
the profiles of velocity and of thermodynamic
properties (P or b) appearing in the boundary
layer belong to a restricted family. This assump-
tion results in the reduction of parabolic
differential equations to ordinary ones.

The two classes of methods are distinguished
by the number of differential equations which
have to be solved.? Methods of Class I involve
consideration of only one differential equation:
this may be either the (degenerate form of)
equation (2), as in the methods of Eckert [6] and
Smith and Spalding [5]; or it may be the
(degenerate form of the) velocity equation as in
the methods of Seban [7] and of Drake [8]. In
the latter case it is necessary to assume explicitly
that the boundary layers of velocity and of b at
any location bear the same relation o each other
as they do in the corresponding “‘similar” flows
of Paper 3; in the former case, this assumption
is made implicitly.

Methods of Class 1! involve the solution of
differential equations for both the velocity and
the b-boundary layers. They therefore involve
more computational labour than do the Class I
methods. When mass transfer is absent (B -> 0),
the b-equation can be solved after solution of the
velocity equation; this has been the case in ali
methods of this class which have been developed
hitherto [9, 10, 11, 12]. When mass transfer is

+ If this system of classification is accepted, we ought
to introduce a Class Zero for methods in which no
differential equations are solved; such methods, which
were omitted from the listing of Smith and Spalding [5}
are exemplified by the method of Stine and Wanlass {13},
which is discussed later (footnote to Section 3.1).
Numerous heat-transfer methods have been classified in
this way in {14].
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present, on the other hand, the two equations
must be solved simultaneously.

The present paper provides Class I methods for
the prediction of mass-transfer rates. The greater
part of the attention will be devoted to a method
of the Eckert type (solution of the b-equation);
however a method of the Seban-Drake type
(solution of the w-equation) will also be dis-
cussed.

Eckert and Livingood [15] have already
extended the method of [6] to problems of mass
transfer, in the particular context of transpira-
tion cooling. The present paper builds on their
foundation and makes the following extensions:
(i) greater range of parameters, including
negative B, large positive B and a wide range of
o-values, (ii) greater accuracy of auxiliary
functions, obtained by use of exact solutions of
the boundary-layer equations not available to
the earlier authors, (iii) more direct derivation
of the equations by the use of vectorial dimen-
sional analysis, (iv) application of Walz’s [16]
quadrature procedure for solving the differential
equation, and presentation of the necessary
constants, (v) improvements to Walz's procedure,
enabling second and higher approximations to
be obtained.

1.4. Outline of the present paper

Section 2 presents the extension of the Seban-
Drake method to the calculation of mass
transfer. It is presented first since it is rather
directly related to the procedures introduced in
Paper 1 of the series, and forms a convenient
introduction to the somewhat more subtle
method of Section 3, namely the extended
Eckert method. Because the Seban-Drake
section is not the recommended one, Section 2
appears in small print.

The development of the argument is similar
to that followed in Paper 1; it has the following
steps: simplifving assumption, dimensional
analysis, reference to the “similar” solutions for
the form of functions appearing in an ordinary
differential equation, provision of a quadrature
procedure, and extension to axi-symmetrical
flows. The most useful formula resulting from
this discussion is equation {44); combined with
the auxiliary Tables 4a and 4b, this equation is
all that is needed by readers solely concerned
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with the use of the method. For many purposes
the first approximation, equation (45), is suf-
ficiently accurate.

Section 4 provides some examples of the use of
the method of Section 3.

2. EXTENSION OF THE SEBAN-DRAKE METHOD
TO MASS TRANSFER

2.1. The argument

The “similar™ solutions of the b-equation [equation
(2)], which were discussed in Paper 3, could be represented
in the form:

WA 13, B o). ©

v

Here 4, “‘conduction thickness” (ft)

y/g = B/(8b/oy)s,

kinematic viscosity of fluid (ft2/h),

B = dimensionless quantity relating to pressure
gradient,

o = p/y = Prandtl
(dimensionless),

“ = dynamic viscosity of fluid (Ib/ft h),

f(...) = “some function of . ..”

The “‘similar” solutions of the velocity equation, which
were discussed in Papers | and 2 of the series, could be
put in the form:

o

or Schmidt number

8,  duc ( )
== ). (M)
Here 3§, = “momentum thickness” (ft)
= Jo @/ua)ll — (ujue)) dy,
v = normal velocity at the surface (ft/h)
= "/ p,
p = fluid density (Ib/ft?),
f(...) = “some function of...”, of course not

the same function as that of equation (6).

Now the definitions of 4,, g and wvs imply the
relations:

vaA“:liSE.f'f.’f, ®)

Y v % v

B=

Consequently, 8 can be eliminated between (6) and
(7), and the resulting relation can be cast in the
form:

4, _ ( 8,% duc, )

DAt il ©)
where f(...) of course now stands for yet another
function.

The essential assumption. Equation (9) is exact only for
a restricted family of flows: we shall take the “similar-
solution” family, when establishing the form of the
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function. However, all the quantities appearing in the
equation are local i.e. measurable at a particular location
on the surface; no knowledge is required of distance from
the leading edge, for example. It is therefore clear that an
approximate method for predicting 4, can be developed
if we make the assumption: equation (9) shall be regarded
as valid for “non-similar” as well as for “‘similar”
boundary layers.

The method. Paper 1 has already explained how 3, can
be calculated, in a given flow, by solution of the differ-
ential equation:

v dx

ug 48,2 (8 duc 053)
— F R
y dx

(10

Since vs is not a given quantity in problems of the type
considered here, while B is, we introduce (8) and (9)
into (10); this then takes the more useful form:

2
1o (2 5,0). (an
v d
Provided the function F,, the constants y, B, and the
velocity distribution u#g(x) are known, equation (11) can
be solved numerically: the result is a distribution of §,
over the surface. Paper 1 presented some techniques for
doing this, and some examples.
Once 8,(x) is given, 4,(x) can be obtained via equation
(9), provided of course that the function appearing there is
tabulated.

2.2. Auxiliary functions

Papers 1 and 2 contain graphs and tables of (ug/v)
(d8,%/dx) as a function of (8,2/v) (dus/dx) and vs8,/». To
use these in the above method it is simply necessary to
have a means of evaluating vsd,/v for each value of B, o
and (8,%/v) (duc/dx). The method will be illustrated by
means of the following example.

2.3. Use of the method

As an illustration, we consider a transpiration-cooling
problem. We suppose that a surface has to be cooled by
forcing a gas through the surface, which is made porous
for this purpose. Specification of the stream, coolant and
desired surface temperatures fixes the driving force B;
let us suppose that this has the value 1-0 in the present
case.t Suppose further that the free-stream velocity
distribution is given, e.g. via Fig. 2 which happens to be
valid, according to Schmidt and Wenner [17], for a
cylinder.

Here U is the approach velocity and / is the cylinder
diameter. Assuming the Prandtl number ¢ to be 0-7, and
taking B = 1-0, we can find a value of vs8,/v for each

t The relation is: B = c(t¢ — s)/Cco0r (ts — tr) in
the absence of radiation, where f¢g, tr and fs are
respectively the temperatures referred to in the text,
while ¢ and c¢o01 are respectively the constant-
pressure specific heats of the main stream and of the
coolant. For explanation, see [4].
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F1G. 2. Velocity distribution, #c(x), for the front half
of a cylinder [17).

value of (8,%/4) (dug/dx) from the “similar” solutions of
Papers 1, 2, and 3. This set of values defines a line on
Fig. 3, which is taken from Paper 1 of the series and
represents the auxiliary function F,; the curve corres-
ponding to ¢ = 07 and B = 10 is the one marked
“exact” on Fig. 3.

The existence of this curve permits us to write equation
(10) as:

#e 48,2 {8 dac;)

v dx “Fﬁ(p dx az
which can now be solved numerically since 8,* is the only
unknown. However an approximate solution is obtain-
able more easily if the curve is replaced by a straight line
as also shown in Fig. 3; in the present case, this approxi-
mation may be represented by re-writing (12) as:

g dd,? 8, duc
26T e 06725 — 587 S 7
N 0672 5 P {13)
which has the closed-form solution:
067250 {= 12
82 == (Vu—g“ﬁ"ﬁz .“ﬂ HG4'37 dx) (14)

Once 3, has been evaluated at points of interest by
inserting the given uc(x) function in the guadrature of
(14), the quantities 4,, g or m’” are easily obtained from
the similar solutions. Thus, if the mass-transfer rate 7’
is required, we simply recall that, from the definitions:

o= pvsz/i&".)‘s_éf
FA

as)
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FiG. 3. F, vs. (3,%/v){(duq/dx) with vs8,/» as parameter.
Broken lines are for B = 1-0 and o = 0-7.

Now the value of »:d,/v can be obtained, for each
value of (8,2/v) dug/dx, directly from Fig. 3: it lies close
t0 0-18 in the present example. The right-hand side of (15)
can therefore be deduced from the 3, (x) values yielded
by (14). Fig. 4 shows the results, for the present example,
in the form of curves of (8y/1) (Ul/»)!/® and of (rit” ljw)
(Ul{v)i? versus x/I. Two pairs of curves are exhibited, one
based on the exact Fy-functions, the other based on the
linear approximation of equation (13); the difference
between the two solutions is seen to be negligible for
most purposes.

2.4. Discussion

The method just described has the advantage
that it is merely a modification and extension of
that presented in Paper 1 for the approximate
prediction of the properties of the velocity
layer; it therefore provides no new conceptual
difficulties.

On the other hand, the use of the method
requires the availability of two sets of auxiliary
functions: those of Paper 1 and those contained
in Paper 3.

Another aspect of the same disadvantage is
that, in carrying out the calculation, we are
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Fic. 4. Solution for transpiration cooling of a

cylinder with B = 1, ¢ = (-7 by method of Section 2.

Dotted line using linear approximation for F,. Solid
line using exact values of F,.

forced to evaluate properties of the wvelocity
boundary layer in which we are not directly
interested.t

In these circumstances it is reasonable to ask:
“Why not eliminate reference to 8, by postulating
the existence of a differential equation like (11)
but with 42 as the independent variable?”” The
recognition of this question, and the elaboration
of its implications, are to be credited to Eckert
[6], who was there solely concerned with heat
transfer (B = 0). The same author subsequently
explored the case B % 0 [15]; we here follow in
his footsteps, taking also the opportunity to
display the logic of the method more completely
than has been customary.,

3. EXTENSION OF THE ECKERT METHOD TO
MASS TRANSFER
3.1. The argument
Simplifying assumption. Focusing attention
on the “conduction thickness” 4,, we now ask

t Of course, if we are interested in calculating how
much effect the mass transfer has on the drag coefficient,
etc. this remark does not apply.
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ourselves what the rate of growth of 4, can
depend on. If we postulate the same “shortness
of memory” which was supposed, in Paper 1, to
characterize the velocity boundary layer, we can
allow only local properties to appear in the
answer to this question. We thus suppose that
dd,/dx depends only on: ug, dug/dx, "', 4,, 3,
v, p, v, B. The distance x from the start of the
boundary layer is specifically excluded from this
list since we argue that this is not a local pro-
perty and that the boundary layer should have
no “‘recollection” of it.}

Dimensional analysis. We now apply a dimen-
sional analysis, in which account is taken of the
laminar boundary-layer simplification which
ensures that viscous and diffusive effects are
responsive only to gradients in the y-direction
{normal to the wall). In this case the x-, and y-,
and z-directions may be regarded as possessing
different dimensions (viz. X, Y, Z). The dimen-
sions of all the quantities appearing in the
previous paragraph are therefore as shown in
Tabie 1, where 7 stands for the dimension of time
and M stands for the dimension of mass. It will
be noted that nine physical quantities appear in
the table, and that there are four independently
appearing dimensions (X, Y, T and M/Z); we
deduce that the physical quantities are related
by an equation involving five (i.e. nine minus
four) dimensionless quantities. These might
conveniently be:

ug dAz 43 dug A4 m'd, pv
Ve vy A & vy

+ It is in this respect that the method, like that of
Paper 1 of the series, differs from the Class-Zero method
of Stine and Wanlass [13], for example. The latter
authors eliminate dd,/dx from the functional relation-
ship and substitute x. This implies that the boundary
layer has a highly selective memory: it can recollect how
far it is from the stagnation point, but forgets everything
that has happened between that point and the local
station. Although it must be admitted that no definitive
comparison of the relative accuracy of the Class-Zero
and Class I methods has ever been made, the unreason-
ableness of the assumption has influenced the authors to
pay relatively little attention to Class-Zero methods in the
present work. Although these methods simplify computa~
tion {the disappearance of d4,/dx means that there is no
longer a differential equation to be solved) the authors
believe that this is at the expense of physical plausibility.
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Table 1
Quantity dd,/dx He duc/dx '’ 4, 3y v p
Dimensions YIX X|T Ir M{XZT Y Y YT MIXYZE MYIXZT

The last two dimensionless groups appearing
in this list are respectively equal to B and to o,
by reason of previously introduced definitions.

Differential  equations for boundary-layer
growth. 1t follows that the simplifying assump-
tion noted at the beginning of this section can be
expressed symbolically as:

v dx

o ML (4 dug 4, B,o) (16)

T A G,

where F, is an as-yet-unknown function.

As in the method of Paper 1, we can determine
the form of the function F, (....) by reference
to the “similar” solutions. If this is done
straightforwardly, however, it is found that the
function has only three independent arguments;
for the four quantities appearing in Fy (... .) are
already linked via (9). This fact permits us to
drop the quantity 4,/8, and to reduce equation
(16) to:

ug dd? B 47 dug ]
—_ = ——F4(—v d}:‘.,B’G"

Equation (17) is the differential equation for
growth of the conduction thickness 4,. It does
not contain the momentum thickness 8, ex-
plicitly. It may be solved by numerical means
whenever ug {x) is specified and B and o are
known.

Discussion. The argument which has just been
developed in terms of 4, could equally well have
been applied to the convection thickness 4,,

defined by:
* b
dzz jo u(} (1 _B) dy.

If this had been done, the equation cor-
responding to (17) would have been the “integral
b-conservation” equation, namely:

lug d43 (1 + B) 4, 4 duc

2 v dx ¢ 4, v dx’

an

(18)

(19

The procedure for solving (19) is the same
as that for (17); in this case it is necessary to
express [(I + B)/e] (4y/4,) as a function of
(4%v) (dug/dx) by reference to the “similar”
solutions. Equation (19) is therefore no easier
to solve than (17); and its solution still involves
the assumption that local conditions are
identical with those in ‘“‘similar” boundary
layers. Nevertheless, solutions to (19) may be
regarded as more satisfactory (i.e. likely to
correspond with reality) than those to {17); for
at least equation (19) is derived directly from the
rigorous partial differential equations., whereas
equation (17) is not.

Despite this consideration, the use of 4, 1s
preferable as a rule because the mass-transfer
rate may be determined from it directly. The use
of 4, rather than 4, is a particularly bold
extension of the line of thought underlying the
so-called ““integral methods”, first developed in
connection with the velocity boundary layer;
there however only 3, is considered as a variable.
The extension was first made by Eckert [6].

Another reason for preferring 4, to 4, has
been uncovered in [5]; considering only the case
of B = 0, the authors of this reference showed
that the 4,-equation is less amenable to approxi-
mate solution as a quadrature than is the 4,
equation. This is of course not a consideration
to which weight need be given by those who are
well equipped for the numerical solution of non-
linear differential equations.

3.2. The prediction procedure

We are now in a position to describe a pro-
cedure for predicting the mass-transfer rate
at any point on a surface for which B. ¢ and
ug (x) are specified, in the form of the foliowing
list of instructions:

Step (i) Choose reference values of velocity, U,
and length L; these may conveniently be the
velocity far upstream of the body and the
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overall length along the surface of the body, but
other choices are permissible and may some-
times be desirable.

Step (ii) Define non-dimensional quantities ug,
x*, and 4] as follows:

uy = uglU (20)
x* = x/L (21
A% =4, \/(U/Lv). (22)

The differential equation to be solved now be-
comes

.44y v dutg
uu ‘a‘xi;‘ = F4 (A4“ d‘x(:;, B, U).

Step (iii) Differentiate the u; (x*) curve appro-
priate to the particular problem, so that now
du/dx* and u, are both available as functions
of x*.

(23)
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Fi1G. 5a. F; vs. (4,2/v)(duc/dx) for ¢ = 0-7 with
B (>0) as parameter.

Step (iv) Solve equation (23) by standard pro-
cedures of numerical analysis (e.g. Runge-
Kutta) referring to Step (iii) for the functions
particular to the problem, and to a general
table or graph of F, for the particular values of
B and o in question. Note that 4;? (dug/dx*) is
identical in value with (43/v) (duc/dx).

The result of this step is a curve of 4} versus
x*,

Step (v) Evaluate m7"’ at each value of x* from

the relation:
. _ VB Y
S \ PNV &

The auxiliary function F,. To permit the per-
formance of Step (iv) of the procedure, a table
or graph of F, is needed. This can be constructed
from the similar solutions of the b-equation as
explained in Paper 3.

Since the function £, has three arguments, the
establishment of sufficient tables is a formidable

N

(24)

2ug/v dA5/dx)
N

Z
7%
7
o

-2

-4 { -0-2
| 34

(43/2) (dug/dx)

FiG. 5b. F, vs. (4.2 /v)(duc/dx) for ¢ = 07 with
B (<0) as parameter.
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F1G. 6a. o¥3F, vs. ¢¥¥d2/p)dug/dx) for ¢ - «
and various B (=0).

task. In the present paper only two tables are
presented; both based on the work reported
in Paper 3. Table 2 contains values of F, valid
for various values of (43/v) (dug/dx) and B and
for a o-value of 0-7; the values have been taken
almost directly from Paper 3. Table 3 contains
values of the quantity o*3F, for various
values of o3 (43/v) (dug/dx) and B, which are
asymptotically correct for high values of ¢; the
Table has been constructed by the methods out-
lined in Appendix A.

The contents of Tables 2 and 3 are presented
graphically in Figs. 4a, b and a, 5b, it should be
noted that, because of the nature of the under-
lying solutions, Table 2 and Fig. 5 are subject
to future amendment as more exact solution of
the “similar” b-equation become available;
Table 3 and Fig. 6, on the other hand, probably
already possess three-figure accuracy

The range of validity of Table 3 and Fig. 6
can be estimated by evaluating F, for o = 0-7
and comparing the values with those in Table 2.
Some results of doing so are shown in Table 6.
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FiG. 6b. o¥3F, vs. o¥¥d 2y X{dug/dx) for o — o« and
various B (<0).

It is seen that although the values from the two
tables agree tolerably for 8 = 0 and B = 0
considerable errors may arise elsewhere. Clearly
the use of Table 3 should be restricted to values
of o greater than 0-7.

3.3. Modification for axi-symmerrical flowst

It has been shown in Papzr 1 of the series that a
transformation introduced by Mangler [I8] permits
problems with axi-symmetrical geometry to be trans-
formed into equivalent two-dimensional problems.
Although the proof given in Paper 1 related solely to
the momentum equation, it applies to the b-equation (2)
with equal force.

As a consequence, the procedure of the last section
should be modified, in order to predict mass-transfer
rates in axi-symmetrical systems, to:

Step (i) As above. Choose also a reference radius R,.

t Sections 3.3 and 3.4 are so similar in spirit to the
corresponding sections of Paper 1 as to be unneces-
sary for reasonably expert readers. They have been
included here, in small print, for the use of readers
who are concerned with the practical use of the
method but not so familiar with boundary-layer
theory as to be able to work out the steps for
themselves in a short time.
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MASS TRANSFER THROUGH LAMINAR BOUNDARY LAYERS—4

Table 6. Comparison of o*/°F, and ¢*/3(4%/v)(duc/dx) from
Table 2 (6 = 0-7) and Table 3 (¢ = ) for B = 0 and
B = 1 and several B values

o2i3F, ! a*3(d 2/v)(duc/dx)
B 0 } 1

o! 0-7 0 \ 0-7 0

B | (Table 2) (Table 3) | (Table2) (Table 3)

~08 1010 1689 | 0879 0444

~06 248 328 1-170 0-862

~04 440 498 1-748 1:309

~02 664 6:80 2:48 1-786
0 923 872 324 229
) 268 1979 810 520
2 51:9 330 13-90 8-68
3 868 481 21-1 12:65
4 1293 65-0 290 17-09
5 181-2 835 378 219
6 244 1036 479 272
7 314 125:1 584 32:9
8 392 1480 69:9 389
9 481 1724 820 453
10| s 1979 94-7 485

|

Step (ii) Define non-dimensional quantities as follows:

uc** = ug/U 25
X** = (1/L) j 2 (R/Ro)* dx (26)
A** = 4, (R/Ry) v (U[Ly) 27)

where R is the distance of the surface element from the
axis of symmetry.
The differential equation to be solved thus becomes:—

A4, **2 K%
ug** -1 _ = F, (414**2 dug B, a).

dx** dx**’ 28

Step (iii) From the data of the problem, and from (25)
and (26), tabulate values of ug** and dug**/dx** for
" various values of x**

Step (iv) Solve (28) by standard procedures, referring to
the appropriate table for values of E,. [Note that 4,**2
(dug**/dx**) is identical in value with (4,%/) (duc/dx), by
reason of the definitions.]

3.4. Srarting conditions

The solution of a first-order differential equation
requires the specification of a boundary condition. This
is usually given, in boundary-layer problems, at the
upstream extremity of the boundary layer where it is
usual to take x (or x*, or x**) as zero. The three important
cases arising in practice will now be discussed.

Body with a sharp leading edge. If the leading edge of the
surface engaging in mass transfer is sharp, the boundary-

373

layer thickness is zero there. The starting condition for
the numerical integration is thus:

x=0, 4= 29
Although this condition is quite adequate from the mathe-
matical point of view, provided that we is not
simultaneously zero, it should be remembered that the
conclusion that 4, = 0, is unrealistic in practice for two
distinct reasons. The first reason is that no practical edge
can be sharp, in the sense of having zero radius of
curvature; the second is that the boundary layer equations
themselves cease to be valid in the vicinity of an edge.
These facts are well known and require no detailed
comment here.

Stagnation point of a two-dimensional body. The second
important case is that of the two-dimensional surface
which does nor possess a sharp leading edge. Such a
surface exhibits a stagnation point, in the neighbourhood
of which the velocity outside the boundary layer increases
linearly with x, the zero of the latter dimension corres-
ponding with the stagnation point. Thus we have:

(30)

suffix 0 here indicating the vicinity of x = 0.

The difficulty presented by this case is that the starting
condition does not immediately yield an initial value of 4,*
with which to begin the integration. The way out of the
difficulty lies through the recognition that (23) ensures
that F, equals zero where uc* equals zero,T i.e. at x* = 0.
Now, since Band o are known, the value of 4,*2 (duc*/dx*)
for which F, = 0 can be learned by inspection of the
tables of the auxiliary function, F,. The starting value of
the boundary-layer thickness is then deduced from:

duc*] J{duc*
aw = lan ) [(G9)

Equation (31) is easily evaluated since (duc*/dx*), is
given in the data of the problem. It is equal to (L/U)
(duc/dx),. Clearly 4,*2 is independent of x* near the
stagnation point.

Stagnation point of an axi-symmetrical body. Near the
stagnation point of an axi-symmetrical body, the velocity
distribution is given once more by the equation:

e (8]

<0

(3D

(32)

This starting condition fails to show immediately what is
the initial value of 4,**, and therefore must be re-arranged
before the numerical integration of equation (28) can
begin. This re-arrangement now follows; the useful
result will be found in the last two paragraphs of the
present section.

A characteristic of the stagnation-point region is that
x and R are identical there.

t Unless d4,**/dx* is infinite, which is physicallyN
implausible.
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Inserting this fact in the definition (26) and integrating.
we deduce the relation between x** and x; it is:

1 X3
3LRS

xFE

(33)

Replacing uc and x in (32) by uc** and x**, we then
deduce:

Y

u(}**

(3LR s (dﬁ(}) X*HL3,
dx/,

This exponential relation between uc** and x** ensures
that locally the boundary layer is described by one of the
exact “'similar” solutions of the boundary-layer equations.
Which solution is relevant is discovered in the following
way. Since the boundary layer is ‘“‘similar”, the two
quantities (4,**? dug**/dx**) and (ug** dd,**%/dx**)
(i.e.F,) have fixed values. What are these values ? Evidently,
by reason of (34):

(34)

dug** (3LR02)‘ 3 (dﬂ( ot )
A k2 T j— A sk - **‘2';3
dore 71 30 Vdx )“x 33)
which can be re-written as:
dug
A,%%2 -
4.%%2 — ( ' dxi), x*®L3 (36)
4 (3LR 2)1 3 (dur) ’
iU dx/,
Differentiating (36) we deduce:
dug**
dek2 MY
dagre Z(A dx** ) . a7
de** T BLRY (dug) X -
U dx
which can be re-written, by reason of (34) as:
dA *¥2 S ** )
ue* 5t **qz(a - ). (38)

Fquation (38) is the relation which enables us to find
the starting condition for the numerical integration;
for it tells us that we must find that value of F,, for the
prescribed values of B and ¢, which is twice the cor-
responding value of 4,%*2 dug**/dx**. Such values lic on
lines of slope 2 in Figs. 5 and 6; reference to these, or
corresponding tables, is the best way of determining the
required quantities.

Once the value of 4,%*2 dug**/dx** has been found in
this way, values of 4,**2 can be evaluated in the vicinity
of x** = 0 from equation (36). Numerical integration of
(28) can now proceed without difficulty.

3.5, Quadrature procedure

The parallels between the procedure recom-
mended in the present section and that for the
velocity boundary layer in Paper 1 are so close
and numerous as to make comment unnecessary.

D. B. SPALDING and S. W. CHI

Certainly it will be no surprise to find that
quadrature procedures for solving equations
(173, (23) and (28) are as helpful here as they
were found to be in Paper 1. The use of the
quadrature procedure is the main point in which
the method of Smith and Spalding [5, 19]
differs from that of Eckert [6, 15]. We shall
first describe the quadrature method, and
provide tables of the relevant quantities. Finally
the method will be still further simplified in the
interests of speedy computation.

Linear approximations to the F, functions. The
quadrature procedure derives from the recog-
nition that the curves appearing in Figs. 5 and 6
can be approximately represented by straight
lines. Indeed, without approximation, we can
write:

(39)

wherein p and g are functions of B and o alone,
while £, is a function of B, ¢ and

(Ai/v) (dug/dx).

The point of the substitution (39) becomes
apparent if we choose p and ¢ so that £ is small.
This may be done by making p equal to the value
of F, when (4%/v) (dug/dx) is zero, and making
g equal to p divided by the value of (43/v)(duc/dx)
where F, is zero. The significance of these
substitutions is shown by Fig. 7. The curve is a

AN
A
N

=
o .
o \AFa=p - g lAE )by /dx)
3
A
¥
N N
ve (I-IS / ) N
(A /) dy. /dx
cﬂ?v/e wnﬁ; £ as parameter
(42w} dug/ax)
a/¥) (dug/ \
FiG. 7. Sketch illustrating the significance of p, ¢

and E,.
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representative member of those appearing in
Figs. 5 and 6, valid for a particular B and o;
the broken straight line is the linear approxima-
tion to the curve, and the vertical distance
between the line and the curve is a measure
of —F,.

Values of p and g and E, corresponding to the
curves appearing in Figs. 5 and 6 are given in
Tables 4 and 5. In the case of Table 5, p and
E, are of course multiplied by ¢2/3.

Solution as a quadrature. Equation (17) can
now be combined with (39) to give, for two-
dimensional boundary layers:

ug d4: 42

du(}
vdx PO

o T Ee (40

This equation may be integrated formally to
give:

4, — (Lﬁ”ii
ug?

< vEuct! dx\ V2
e fi vE et ) . (4D

Now since p and ¢ have been chosen so as to
make E, small, a first approximation to 4,
namely 4, 1, is given by ignoring the second term
in the bracket. We obtain:

(pv ff, uget dx)l/2
g = (P EE
ug?

(42)

Since p and ¢ are known, for given B and o,
while ug 1s a known function of x, the right-
hand side of (42) is easily evaluated.

Although equation (42) will often give suf-
ficient accuracy to warrant accepting 4,1 as the
required value of 4,, a second and better
approximation, namely 4, 11, may be obtained by
the following procedure:

(i) From (42) and given values of dug/dx
evaluate 42, dug/dx at each x-station
considered in the quadrature.

(i) Hence from Tables 4 and 5, evaluate
E4 1, the corresponding value of E, for
each x-station.

(iii) Thereafter calculate 4411 from the fol-
lowing expression deriving from equation
41):

“ Eq1ug?—t dx\12
A,,,n:(A‘;;.H—‘«—vf‘ - _") NCE)
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If desired, third and fourth approximations
may be evaluated in a similar manner. Con-
vergence is bound to be rapid since p and ¢4 have
been chosen so as to render £, small.

A general formula

Quadrature formulae corresponding to equa-
tions (41), (42) and (43) can of course be written
in terms of the singly-starred and doubly-
starred quantities of Sections 3.2 and 3.3.
The latter transformation is however only
desirable as an interim measure, indicating how
the radius variation R/R, has to be introduced
into the quadrature in terms of the singly-
starred quantities. We may therefore adopt the
following equation as the generally valid quadra-
ture formula:

p i (RIRo)? uie~t dx*

 (RIRPu
fi (RIR)? Eyufat dx*] v
~(R/Rfuln J

4

*7
=

(44)

+

Two-dimensional flows can be treated by this
formula by regarding them as limiting cases of
axi-symmetrical ones, in which R/R, has a
uniform value at all x*; thus the R/R, terms
vanish. The quantity E, appearing in (44) is of
course the same function of 4;* du;/dx* as it is
of (4%/v) (dug/dx).

The corresponding formula for the first
approximation to 4 is obviously:

4, — {_p [ (RIR) ugi~t d,_x*]l*{ (45)
(R/R0)2 uc.q

Further values of p and g

It would be impracticable to present tables
such as Table 4 for all values of . However, if
the first approximation to the 4, distribution is
regarded as sufficiently accurate, the only
auxiliary functions needed are p (B, o) and
g (B, o). These are provided in Fig. 8, which has
been derived from the similar solutions contained
in Paper 3; actually p 2 is plotted instead of p
for obvious reasons.

Fig. 8, together with the quadrature formula
(42) or (45), provide a convenient and simple
means of predicting mass-transfer rates, often
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with acceptable accuracy, over a wide variety of
conditions.

4. APPLICATIONS OF THE METHODS OF
CALCULATIONS

4.1. Introduction

The remainder of the paper will be devoted to
the presentation and discussion of particular
applications of the methods of mass-transfer
predictions. The examples are chosen because of
their practical importance, to illuminate a
particular aspect of the theory, or to provide
comparisons with the predictions of other
authors.

4.2. The axi-symmetrical stagnation point
Practical relevance. Mass transfer occurs
through the laminar boundary layers which

form at axi-symmetrical stagnation points in a
number of practical circumstances, for example:
at the front of a sphere of burning liquid fuel
suspended in an air stream {20}; on the nose of a
transpiration cooled space vehicle re-entering
the earth’s atmosphere [21]; and on a pellet of
ammonium perchlorate exposed to a perpen-
dicular stream of hydrocarbon gas [22]. Al-
though the fluid density and transport properties
are actually non-uniform in all these cases, it is
still valuable to have solutions to the differential
equations of boundary layer for uniform pro-
perties; for, as has been shown [23}, the variable-
property solutions differ little from the uniform-
property ones, in important respects, when
appropriately plotted.

The axi-symmetrical stagnation point is of
course a situation which gives rise to a “‘similar”
boundary layer; this means that the methods of
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the present paper are not needed for the predic-
tion of the boundary layer-parameters, values
for which can be deduced directly from Paper 3.
Nevertheless, the methods given in Section 3
may be used; comparison of the results with
exact ones gives an indication of the accuracy
of the methods.

Exact solutions. Figs. 9 and 10 contain plots
of ¢¥3 gf{up dug/dx)? and m' f{pp dug/dx)V?
respectively. The abscissa is B and the parameter
is o. The curves have been constructed from the
exact values presented in Paper 3, filled out by
the use of the 7 {J, K) Tables there presented;
they can be taken as accurate within 4-2 per cent.

Fig. 9 is qualitatively similar to one presented
for the two-dimensional stagnation point in
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B

Fic. 9. Values of dimensionless mass-transfer
conductance for the axi-symmetrical stagnation
point (B = $) obtained as indicated in text.

Paper 3 (Fig. 6 of that paper); as usual, the
conductance decreases as the driving force
increases. Fig. 10 shows the influences of B and
o on the mass-transfer rate more directly.
Solutions obtained by the first approximation
of Section 3.5. It has been explained already in
Section 3.4 that, at the axi-symmetrical stagna-
tion point, ug is proportional to x [equation
(30)] and x is equal to R. In these circumstances
equation (45) yields:
28
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Fic. 10. Values of the dimensionless mass-transfer
rate at the axi-symmetrical stagnation point (8 = })
derived from Fig. 9.

. p 1/2
A= [@’2’)@&@7&‘6} - U9
Returning to physically significant quantities by
way of (24), (20) and (21), we obtain:

m”
(5 ), = = (116) g + 2 (usia 1
@47
wherein the subscript I serves as a reminder that
the first approximation is in question.

Fig. 11 contains a plot of 6%/ g1/[up dug/dx]"/2
against B for various o, obtained by evaluating
(47) with the aid of the p and g values contained
in Fig. 8. Comparison with Fig. 9 shows good
qualitative agreement, and a quantitative agree-
ment within 5 per cent over most of the range.
The disagreement between the first approxima-
tion and the exact values becomes greatest when
B is large and o is small.

Solutions obtained by iteration. When the
error term £, is introduced into the 4, expres-
sion, as indicated by equation (44), (46) must
be replaced by:

P+ E,

4 1/2
= lechaden] @
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Frg. 11. Values of dimensionless mass-transfer

conductance for the axi-symmetrical stagnation
point (8 = }), obtained by the first approximation of
Section 3.5.

where E; depends on (4/v) dug/dx, B and on o,
as is shown by Table 4a, for example.

As an illustration of the use of the latter table,
we determine the value of 4] for ¢ = 0-7 and
B == |, for this case, p = 34-0and g = 3-37.

The first approximation, with E, set equal to
zero in (48), yields

., dug 34
igee — 33749~ 03
Interpolation in Table 4a thus yields a value of
E,; equal to —2-6. Insertion of this quantity
into (48} leads to the second approximation for
45 in the form:
du; 34 -—26

Tinger T33702 =7

(49)

(50)

The resulting second approximation is cor-
respondingly found from Table 4a, to be —2-8.
Substitution of this value in (48} yields the third
approximation for 4; in the form:

dut 34 — 28

*2 B e 0 3
4 =373 = 581

R it ai* (51}
We may conclude that convergence is rapid;
the first approximation for 4] is only about
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4 per cent too large while the second is already
within } per cent of the asymptotic value.

Of course the asymptotic values are identical
with those of Figs. 9 and 10, since Table 3 has
been derived from the same family of exact
solutions as have Figs. 9 and 10. There is there-
fore no point in making further comparisons.

Concerning the validity of the Chilton-Colburn
analogy. In analyses of melting ablation at the
axi-symmetrical stagnation point, Adams and
Bethe [24], and Lees [25], have assumed that
the shear stress at the interface is related to the
mass-transfer conductance as follows:

(52)

This relation represents a modification of the
Reynolds analogy introduced by Chilton and
Colburn [26].

The data in Fig, 9, together with those col-
lected in Paper 1 and 2, enable us to test this
assumption comprehensively. The result of the
test is shown in Fig. 12. Evidently the Chilton~
Colburn analogy under estimates the ratio of
shear stress to mass-transfer conductance; it
expresses the effect of o only at large o.
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FiG. 12. A test of the Chilton—Colburn analogy for the

axi-symmetrical stagnation point. Curves would

collapse into a horizontal with unity ordinate if
analogy were correct.
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Fig. 13 contains, for interest, a corresponding
test of the Chilton-Colburn analogy for the two-
dimensional stagnation point. Similar conclu-
sions may be drawn.
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FiG. 13. A test of the Chilton-Colburn analogy for
the plane stagnation point.
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F1G. 14. Solution for transpiration cooling of a
cylinder (by the method of Section 3). Dotted lines:
Ist approximation; solid lines: exact solution of
equation (17).

(a,/0) Lo

4.3. The transpiration cooling of a cylinder

We return now to the problem discussed in
Section 2.3; instead of the extended Seban-—
Drake method, however, we here use the methods
described in Section 3.5.

The resuits are shown in Fig. 14 wherein
(m lfu) (Ulv)V2 and (4,/1) (Ul/v)*'? are plotted
against x//l. The broken curves are those ob-
tained by the use of equation (42); the full
curves result from the evaluation of (41) by
successive approximations and so may be
regarded as satisfying equation (17) exactly.
Clearly the first approximation differs only
slightly from the exact solution.

The mass-transfer rate deduced from the
method of Section 3 is compared in Fig. 15
with that deduced earlier. Here it is evident that
the two results are in agreement at the stagnation
point but differ appreciably elsewhere. The
agreement is to be expected, since the flow near
the stagnation point is a “similar’ one; as to the
disagreement, there is no present way of telling
which curve is more “correct”, although it may
be regarded as relevant that the Section 3

09

o4}

(A"t fu)/ J/yy

1 L i 1 L L

o] 0l 02 03 Q-4 Q-5 0-6 o7
x/

FI1G. 15. Comparison of solutions for the transpira-

tion cooling of a cylinder with B = 1 and ¢ = 0-7.

(i) By the method of Section 2. (ii) By the method of
Section 3.



380 D. B. SPALDING and S. W. CHI

method agrees better than the Section 2 method
with experimental data on heat transfer from
cylinders in the absence of mass transfer [14].

4.4. The sphere

The application of the theory to axi-sym-
metrical bodies has been discussed in Section
3.4. The problems of burning of fuel droplets,
transpiration cooling of nose cones, etc. are
examples of this application. To illustrate it, we
consider the burning of fuel droplets at Reynolds
numbers which are high enough for a boundary
layer to form over the front half of the sphere.
The mainstream velocity distribution over the
front portion of a sphere under these conditions
[27] is shown in Fig. 16; this has been used, in

L 1 L i 1 ol

0 o1 02 03 04 05 06 o7
2/t
FiG. 16. Velocity distribution over the front portion
of a sphere [27].

conjunction with the method of Section 3.5, to
permit the calculation of the mass-transfer rate.
The results for various B are shown in Fig. 17
in the form of a plot of (#1”/jw)/+/(Ul/v) against
x/l wherein dotted lines are first approximations
and solid lines second approximations. The
latter are sufficiently exact (Section 4.2).
Experimental data are available for the
average burning rate, m’’, for the whole surface
of a sphere of burning liquid fuel [20]; a smooth
curve through these data is shown by the broken
line in Fig. 18. The transport-properties u and

p have been inserted at their free-stream values
in evaluating the dimensionless value

" [/ (upUfD).
The prediction of Fig. 17 can be compared
with the experimental data only if an assumption

30

(") ) S/ v)

¢] Ol 02 03 o4 o5 06 07
x/l

FiG. 17. Dimensionless mass-transfer distribution
over the front portion of a sphere.
— — — — lst approximation,
2nd approximation.
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FiG. 18. Average dimensionless mass-transfer rate
for a sphere. The theoretical prediction neglects the
contribution of the rear half of the surface.
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is made concerning the contributions of the rear
half of the sphere to the total burning rate.
Since it is known that this contribution is much
less than that of the front half at this Reynolds
number, we shall assume that it is zero. Then a
theoretical value of m''/4/(upUjl) can be
obtained from Fig. 17 by evaluation of the
quadrature:

m''wlt = [P’ . 2=R dx. (53)

The corresponding curve is marked as a full
line in Fig. 18.

1t is seen that the experimental and theoretical
curves lie close together. The latter lies some-
what below the former as is to be expected; for
the complete neglect of mass transfer from the
rear haif of the sphere is certainiy too exireme an
assumption.

4.5. The flat plate

As a final example of the application of the
present methods, we consider the burning of
steel from a flat surface along which flows a
stream of oxygen; it will be supposed that the
boundary layer is laminar. This example is
chosen more so as to emphasize the practical
applicability of the theory as a whole than
to illustrate the mathematical techniques which
form the focus of attention in the present paper;
for the boundary layer on a flat plate is of course
a “similar™ one.

Nature of process. In the process of burning
of steel, oxygen diffuses to the surface of steel and
reacts with it to form iron oxide and carbon
monoxide. Being non-volatile, the iron oxide
pours away from the surface of the steel as
liquid slag. Consequently, the net substance
transferred to the combustion face of steel is the
amount of oxygen diffused to the surface
minus the amount of carbon monoxide formed.
Moreover, the reaction between oxygen and
steel is exothermic, and most of the heat of
reaction is used in melting the steel. This
molten metal also pours away from the surface.
The total rate of disappearance of steel from the
surface is, therefore, the sum of the burning
rate and the melting rate; it can be calculated
from, a knowledge of the gas transferred to the
surface of steel, the reaction heat balance and
the composition of the steel.
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carbon, the driving force can be written [28] as:

g Uomn—me o s

(1 — no)ri — nere

B = driving force,

n, = mass of carbon per unit mass of
steel,

r. = mass of oxygen which combines
with unit mass of carbon to
form CO,

r; = mass of oxygen which combines
with unit mass of iron to form
Fe,Oq,

mo,¢ = mass fraction of oxygen in main
gas stream.

where

In deriving equation (54), the oxygen con-
centration at the surface of the steel has been
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FiG. 19. (m"x/w)/v/{Ux/v) vs. B for flat plate and
various o.

——— calculated curves
O experimental values for combustion of
0-195 9, C—steel in oxygen stream (from [29]).
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taken as zero; this is justifiable when the surface
temperature of the steel is high.

Dimensionless mass-transfer rate. For a given
value of B, as obtained from (54), we can deter-
mine the corresponding value of ("' )/ {(Ux/v)
for 8 = 0 and various ¢ from the graphs of Fig.
19 which have been derived from Figs. 2 and 5
of Paper 3 [23],

Comparison with experimental results. Also
plotted in Fig. 19 are points obtained experi-
mentally for the burning of 0-195%; C-steel by
Wells {29]. This reference gives the rates of steel
disappearance (burning rate plus melting rate);
we have converted them to our notation of the
form: (#" x/u)/(Ux/v) versus B. In the conversion,
the heat loss due to radiation and conduction
of steel is neglected, and the property values of
the stream are obtained from Kaye and Laby
[30] at a reference temperature of 770°C which is
the mean of the temperature of the main gas
siream and the melting point of the steel; o is
taken as 0-7.

It is seen that the agreement between the
experiments and the theoretical prediction
{o == 0-7 line In Fig. 19} is good. It should be
mentioned that Wells [29] also presented a
theoretical analysis of his results which, though
in a different and less general form than the
present one, made use of similar assumptions
and led to the same satisfactory agreement with
experiment.

5. CONCLUSIONS

(a) Similar methods to those presented in
Paper 1 for the velocity boundary layer
have been developed for calculating the
rate of mass transfer through laminar
steady uniform-property boundary layers
when the surface and transferred-substance
conditions are uniform.

(b) The recommended method is represented
by equation (44); equation (45) is easier
to use but somewhat less accurate.

(¢) Where checks have been made, agreement
between theory and experiment is satis-
factory.

(d) 1t is shown that a commonly made assump-
tion regarding the Chilton~Colburn rela-
tion between the surface shear and the
surface conductance for heat and mass
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transfer is considerably in error for the
axi-symmetrical and two-dimensional stag-
nation points,
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APPENDIX A
Method of calculation of the F, function for o — oo
(For full explanation of notation, see
Paper 3)
When o tends to infinity, the procedure
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described in Section 4.4 of Paper 3 may be
modified as follows:

(i) Since B remains finite, equation (26) of
Paper 3 dictates that f; tends to zero as o - 0.

(ii) The corresponding value of ", obtained
from the solutions of the velocity equation
given in Paper 2, therefore depends only on 8.

(iii) The choice of o is unnecessary.

(iv) J is now best written as — B/I; K is zero by
reason of equation (53).

(v) A choice of J now gives a value of [
directly from Table 4 of Paper 3.

(vi) Hence such a choice leads to values of

B [of,\ /3
5 (%)

and of B; for the former equals 7, from equation
(51) of Paper 3, while the latter equals —IJ as
just shown.

{vii) Since
ug da: B\2
2/3 "7 T4 — i 7
ot — dx 2(1 — B) (b{,) o (Al)
Table AL, B, [, etc. for o—> @

B f 201 — B)OIfy " B/ )
—-0-19 0-0860 40-34 —3-220
—0-18 01285 30-60 —2-334
—0-16 0-1905 2314 —1-596
—~0-15 02161 21-08 —1-375
—0-14 0-2395 19-52 —1-199
—0-10 0-3191 15-56 —0-7071
—0-05 0-4008 12-75 —0-0304

0 0-4696 10-93 0

0-1 0-5870 8478 04710

02 0-6869 6786 0-8483

03 0-7748 5-480 1-1743

0-4 0-8542 4-401 1-4671

05 0-9277 3472 1-736

06 0-9960 2:649 1-987

0-8 1-1200 1-225 2:449

1-0 1-2326 0 2-873

12 1336 —1-089 3-266

14 1-431 —2-080 3-641

16 1-521 —2997 3996

18 1-606 —3-852 4-337

2:0 1-687 —4-660 4660

2:2 1-764 —5-428 4976

2:4 1-837 —6-164 5-284
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and

(A2)

14

A% dug B\?
2/3 4 T 2/3
7 dx A (bf] ) ?

from equations (36) and (35) of Paper 3 respec-
tively, we can write the following relations for
the quantities appearing in Table 3 and Fig. 6:

Fyo¥3 =21 — B) (f%)z'%z (A3)

B(=—1)) e

Table A2.J, I, B and I? for 0 — «

D. B. SPALDING and S. W. CHI

and
LA dug 6 \23
2374 V6 a4 f Y
v dx B (fo”) [2
where in [ is a function only of B and £, is a
function only of B.

The last-named functions are contained in
Tables Al and A2. The former is deduced from
the f, = 0 data in Table 1 of Paper 2; the latter
is deduced from the K = 0 data of Table 3 of
Paper 3.

(A4)

J 1 B(..—1)) I*
0 0-8930 0 07974 0 0-8930 0 0-7974
0-10 0-8495 —0-0850 07217 —01 0:9398 0-0940 0-8832
0-20 0-8090 —0-1618 0-6545 —02 0-9903 0-1981 0-9807
030 0-7713 —0-2314 0-5949 —~0-3 1-:0448 0-3135 1-0916
040 07362 —0-2945 0-5420 —04 11037 0-4415 12182
0-50 07035 —0-3517 0-4949 —0-5 1-1674 0-5837 1:3268
0-60 0:6729 —0-4037 0-4528 —0-6 1-2364 0-74138 i-5287
070 0-6443 —0-4510 04151 —0-7 1-3112 09178 17192
0-80 06175 —0-4940 0-3813 —0-8 1-:3924 1-1139 1-9388
0-90 0-5924 --0-5332 0-3509 —-09 1-4806 1-3325 2-1922
1-00 0-5688 —0-5689 0-3235 —1-0 1-5766 1-5766 2:4857
1-10 0-5468 —0-6015 0-2990 — 11 1-6812 1-8494 2-8264
1-20 0-5260 —0-6313 0-2767 —1-2 1-7954 2-1544 3:2235
1-30 0-5065 —0-6585 0-2565 —13 1-9200 2-4960 3-6864
1-40 04881 —0-6834 0-2382 —1-4 2:0563 2-8788 4-2284
1-50 04708 —0-7062 02217 —15 2:2056 3-3084 4-8647
1-60 04544 —0:7271 0-2065 —1-6 2:3692 3-7907 5-6131
1-70 04390 —0-7463 0-1927 —-17 2:5488 4-3330 6-4960
1-80 0-4244 —0-7639 0-1801 —1-8 2-7462 49432 7-5416
1-90 0-4106 —0-7801 0-1686 —19 2-9635 5-6306 8:7823
2-:00 0-3975 —0-7950 0-1581 —20 3-2028 6-4057 10-258
2-10 0-3851 —0-8087 0-1483 —2-1 3:4669 7-2805 12-019
2:20 0-3734 —0-8214 0-1394 —22 37586 8-2690 14-127
2-30 0-3622 —0-8331 0-1319 —2-3 4-0813 93869 16-657
2:40 0-3516 —0-8438 0-1236 —24 44386 10-653 19-701
2-50 0-3415 —0-8538 0-1166 —2-5 4-8348 12-087 23-375
2-60 0-3319 —0-8630 0-1102 —2:6 5:2747 13-714 27-822
270 03228 —0-8715 0-1042 —27 57637 15-562 33-220
2-80 0-3141 —0-8794 0-0987 —2-8 6-:3079 17-662 39:790
2-90 0-3058 —0-8867 0-0935 —29 69145 20-052 47-810
3:00 0-2978 —0-8935 0-0887 —30 7:5913 22774 57-628
325 0-2795 —0-9084 0-0781 —3:25 96536 31-374 93-192
3-50 0-2631 —0-9209 0-0692 —3-50 12:396 43-387 153-67
375 0-2484 —0-9314 00617 -3-75 16:072 60-270 258-31
4-00 0-2350 —0-95402 0-0552 —4-00 21-036 84-145 442-52
425 0-2230 —0-9476 0-0497 —4:25 27-792 118-115 772-338
4-50 02120 —0-9540 0-0449 —4-50 37-054 166-743 13730
4-75 0-2011 — 09594 0-0404 —4-75 49-848 236-78 2484-8
5-00 0-1928 —0-9641 0-0372 —5-00 67-649 338-25 4576:4
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Résumé-—Les solutions exactes des équations de la couche limite laminaire & propriétés constantes
présentées dans un article précédent sont utilisées pour le développement de méthodes approchées
permettant de calculer les coefficients de transport de masse dans le cas de surfaces bidimensionnelles
ou de révolution, la vitesse de ’écoulement principal étant arbitraire et les conditions de la matiére
transportée et de I'interface €tant constantes le long de la surface. Le taux de transport de masse est
obtenu avec une précision suffisante dans bien des cas, a partir du calcul d’une seule quadrature ou
figureent la vitesse de 'écoulement principal et des constantes dépendant du nombre de Prandtl/
Schmidt; on propose une méthode d’itération pour améliorer un peu la précision. La méthode est un
développement de celle d"Eckert et Livingood et fait usage du procédé de quadrature de Walz.

Zusammenfassung—Die exakten Losungen der laminaren Grenzschichtgleichungen mit einheitlichen
Stoffeigenschaften wurden in fritheren Arbeiten dieser Reihe angegeben. Hier dienen sie dazu,
Naherungsmethoden zur Bestimmung des Stoffiiberganges an zweidimensionalen und achssym-
metrischen Oberflichen bei beliebiger Hauptstromgeschwindigkeit zu entwickeln, soweit die Stoff-
eigenschaften der Trennfliche und der iibertragenen Substanz entlang der Oberfliche einheitlich
bleiben. Die Stoffiibergangsgeschwindigkeit ldsst sich fiur viele Zwecke geniigend genau durch
Auswertung einer einzigen Quadratur erhalten, die die Hauptstromgeschwindigkeit und die von der
Prandtl/Schmidtzahl abhingigen Konstanten einschliesst. Mit einem angegebenen [terationsverfahren
lasst sich die Genauigkeit etwas steigern. Die Methode ist nach jener von Eckert und Livingood unter
Beniitzung des Quadraturverfahrens von Walz weiterentwickelt.

Annoranua—Ilonyvennse B MpeABIYIWK CTATHAX TOYHBIE POUIeHHA ypaBHEeHHI JaMuuap-
HOTO NOIPAHUYHOTO CJOA € MOCTOAHHBIMH XAPAKTePUCTHKAMH MHCHOJB3VIOTCA JJA pas-
paboTku npuOINAOHHHX METOZOB pacdeTa CKODOCTH HEPEeHOCA MAacChl ¢ IBYMEDHBIX H
OCECHMMETDUYHHIX IMOBePXHOCTEN NPH HPON3BOJILHON CKOPOCTH OCHOBHOTO NOTOKA, MOCTOSH-
HBIX VCJIOBUAX HA MOBEPXHOCTH PA3JeNIa ¥ MOCTOAHHEIX YCIOBMAX HNEPEHOCA Bell{ecTBa BAOIb
noBepxHocTH. JJIA MHOTMX cliydaeB CROpDOCTH MepeHoca MACCHL NOJAYYeHA € J0CTATOYHOH
TOYHOCTBIO OHOHW KBAApaTypoil, BKIOYAKIIEH CKOPOCTE OCHOBHOIO MOTOKA M IOCTOSIHHbIE,
sasucAmme oT kpurepnsa [Ipaugras/IlImuara. IlpoBefeH NOBTOPHBUA pacyer, HECKOMBKO
TOBBILAKWNGA TOUHOCTE. JlaHHBIH MeTOH FABIAETCHA PA3BHTHEM MeTofa Jxrkepra 1 Jlusuwu-
Tyjda H HCHOJB3YET MeTod KBaipaTyp Bousma.
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